Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disk electrodes electrochemical reaction

S. Wu, M.E. Orazem, B. TriboUet, V. Vivier, Impedance of a disk electrode with reactions involving an adsorbed intermediate experimental and simulation analysis, J. Electrochem. Soc. 156 (2009) C214-C221. [Pg.238]

V. Mie-Wen Huang, V. Vivier, M. E. Orazem, N. Pebere, B. Tribollet, The apparent constant-phase-element behavior of a disk electrode withfaradaic reactions, J. Electrochem. Soc.,... [Pg.94]

In such systems the researcher can electrochemically clean and precondition the metal electrode before each run to provide an identical surface for the anodic and the cathodic half-reactions as well as for the catalytic reaction between them. Use of a rotating disk electrode/ckatalyst also allows surface- and diffusion-controlled processes to be easily distin-guished. ... [Pg.7]

Similar to the rotating disk, the RHSE has the ability to determine the reaction order and reaction rate constants of an electrode reaction. Consider an electrochemical reaction of the type... [Pg.193]

The RHSE has the same limitation as the rotating disk that it cannot be used to study very fast electrochemical reactions. Since the evaluation of kinetic data with a RHSE requires a potential sweep to gradually change the reaction rate from the state of charge-transfer control to the state of mass transport control, the reaction rate constant thus determined can never exceed the rate of mass transfer to the electrode surface. An upper limit can be estimated by using Eq. (44). If one uses a typical Schmidt number of Sc 1000, a diffusivity D 10 5 cm/s, a nominal hemisphere radius a 0.3 cm, and a practically achievable rotational speed of 10000 rpm (Re 104), the mass transfer coefficient in laminar flow may be estimated to be ... [Pg.201]

The creation of nanostructured surfaces is one thing, the study of electrochemical reactions on such nanostructures is another one. Especially in electrocatalysis, where size effects on reactivity are often discussed, there have been attempts to use the tip of an STM as a detector electrode for reaction products from, say, catalytically active metal nanoclusters [84]. Flowever, such ring-disk-type approaches are questionable,... [Pg.138]

The absence of dimer radical cation formation by diphenyl selenide under the pulse radiolysis conditions is in contrast to bimolecular reactions believed to occur under electrochemical conditions/ In these experiments, a rotating disk electrode was used in combination with commutative voltammetry under anhydrous conditions. The results led to the conclusion that reversible one-electron oxidation is followed by disproportionation, then reaction of the resulting dication with diphenyl selenide or an external nucleophile, with the likely intermediacy of the dimer dication (Fig. 33). As expected, the dihydroxy selenane is formed when water is present. Based on the kinetics of the electrochemical reaction, the authors believe the diselenide dication, not the radical cation, to be the intermediate that reacts with the nucleophile. [Pg.124]

A precondition for an appropriate decision in the planning of a preparative electroorganic synthesis is sufficient information about the electrochemical reaction. As far as possible, knowledge about the influence of parameters such as temperature, solvent, pH value, and stirring rate should be included. Electroanalytical standard methods to acquire such data have been discussed in Chapter 1 cyclovoltammetry as an especially valuable tool and its combination with the rotating disk electrode method for additional knowledge. At... [Pg.29]

The basic assumption is that the rotating filter creates a laminar flow field that can be completely described mathematically. The thickness of the diffusion boundary layer (5) is calculated as a function of the rotational speed (to), viscosity, density, and diffusion coefficient (D). The thickness is expressed by the Levich equation, originally derived for electrochemical reactions occurring at a rotating disk electrode ... [Pg.253]

Additives can be consumed at the cathode by incorporation into the deposit and/or by electrochemical reaction at the cathode or anode. Consumption of coumarin in the deposition of nickel from a Watts-type solution has been studied extensively. Thus, in this section we discuss the consumption of coumarin, which is used as a leveler and partial brightener. In a series of papers (33, 36), Rogers and Taylor, described the effects of coumarin on the electrodeposition of nickel. They found that the coumarin concentration decreases linearly with time at —960 mV (versus SCE and 485 to 223 rpm at a rotating-disk electrode, for plating times of 8 to 75 min. A rotating-disk electrode was used to achieve a uniform and known rate of transport of additive to the cathode. Rogers and Taylor found that the rate of coumarin consumption is a function of coumarin bulk concentration. Figure 10.16 shows that the rate of consumption... [Pg.194]

The application of surface-enhanced Raman spectroscopy (SERS) for monitoring redox and other processes at metal-solution interfaces is illustrated by means of some recent results obtained in our laboratory. The detection of adsorbed species present at outer- as well as inner-sphere reaction sites is noted. The influence of surface interaction effects on the SER spectra of adsorbed redox couples is discussed with a view towards utilizing the frequency-potential dependence of oxidation-state sensitive vibrational modes as a criterion of reactant-surface electronic coupling effects. Illustrative data are presented for Ru(NH3)63+/2+ adsorbed electrostatically to chloride-coated silver, and Fe(CN)63 /" bound to gold electrodes the latter couple appears to be valence delocalized under some conditions. The use of coupled SERS-rotating disk voltammetry measurements to examine the kinetics and mechanisms of irreversible and multistep electrochemical reactions is also discussed. Examples given are the outer- and inner-sphere one-electron reductions of Co(III) and Cr(III) complexes at silver, and the oxidation of carbon monoxide and iodide at gold electrodes. [Pg.135]

Both the ring-disk and thin-layer electrodes provide a convenient means for observing unstable intermediate products from electrochemical reactions. Quantitative evaluations of the lifetimes of these intermediates and of the products from such intermediates are readily evaluated by each of these methods.52 53... [Pg.133]

The RDE consists of a disk electrode embedded in an insulating rod material as shown in Fig. 14 (44). The composite electrode can be rotated about its axis, which causes electrolyte to be drawn up against, and forced outwards across, the face of the metal disk electrode, as shown in Fig. 15 (45). The convection and diffusion equations that describe solution flow in this situation have been rigorously established making this experimental approach a powerful one for the study of the effects of forced convection of electrochemical reactions. [Pg.278]

The objective of the mass transport lab is to explore the effect of controlled hydrodynamics on the rate at which a mass transport controlled electrochemical reaction occurs on a steel electrode in aqueous sodium chloride solution. The experimental results will be compared to those predicted from the Levich equation. The system chosen for this experiment is the cathodic reduction of oxygen at a steel electrode in neutral 0.6 M NaCl solution. The diffusion-limited cathodic current density will be calculated at various rotating disk electrode rotation rates and compared to the cathodic polarization curve generated at the same rotation rate. [Pg.416]

Bipotentiostat — An instrument that can control the potential of two independent -> working electrodes. A - reference electrode and an -> auxiliary electrode are also needed therefore the cell is of the four-electrode type. Bipotentiostats are most often employed in electrochemical work with rotating ring-disk electrodes and scanning electrochemical microscopes. They are also needed for monitoring the electrode-reaction products with probe electrodes that are independently polarized. All major producers of electrochemical equipment offer this type of potentiostat. The instruments that can control the potential of more than two working electrodes are called multipotentiostats. [Pg.51]

The Frumkin epoch in electrochemistry [i-iii] commemorates the interplay of electrochemical kinetics and equilibrium interfacial phenomena. The most famous findings are the - Frumkin adsorption isotherm (1925) Frumkin s slow discharge theory (1933, see also - Frumkin correction), the rotating ring disk electrode (1959), and various aspects of surface thermodynamics related to the notion of the point of zero charge. His contributions to the theory of polarographic maxima, kinetics of multi-step electrode reactions, and corrosion science are also well-known. An important feature of the Frumkin school was the development of numerous original experimental techniques for certain problems. The Frumkin school also pioneered the experimental style of ultra-pure conditions in electrochemical experiments [i]. A list of publications of Frumkin until 1965 is available in [iv], and later publications are listed in [ii]. [Pg.284]

Tarasevich et al. [417, 420] employed the rotating disk electrode with an oxide disk electrode to study the electrochemical reactions of peroxide in conjunction with a gasometric method, by means of which the rate of the peroxide decomposition via a purely chemical pathway [eqn. (72)] could be followed independently. The authors compared the rate of gas evolution and peroxide electroreduction and oxidation, respectively, as a function of electrode potential and attributed the difference of these rates to chemical... [Pg.320]


See other pages where Disk electrodes electrochemical reaction is mentioned: [Pg.342]    [Pg.67]    [Pg.256]    [Pg.578]    [Pg.408]    [Pg.225]    [Pg.172]    [Pg.197]    [Pg.201]    [Pg.513]    [Pg.343]    [Pg.253]    [Pg.278]    [Pg.423]    [Pg.670]    [Pg.140]    [Pg.116]    [Pg.381]    [Pg.832]    [Pg.945]    [Pg.277]    [Pg.306]    [Pg.148]    [Pg.729]    [Pg.202]    [Pg.399]    [Pg.592]    [Pg.639]    [Pg.314]    [Pg.143]   
See also in sourсe #XX -- [ Pg.201 , Pg.202 ]




SEARCH



Electrochemical reactions

Electrode reactions

Electrodes electrochemical

© 2024 chempedia.info