Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct ethanol fuel cells alkaline-acid

DMFCs and direct ethanol fuel cells (DEFCs) are based on the proton exchange membrane fuel cell (PEM FC), where hydrogen is replaced by the alcohol, so that both the principles of the PEMFC and the direct alcohol fuel cell (DAFC), in which the alcohol reacts directly at the fuel cell anode without any reforming process, will be discussed in this chapter. Then, because of the low operating temperatures of these fuel cells working in an acidic environment (due to the protonic membrane), the activation of the alcohol oxidation by convenient catalysts (usually containing platinum) is still a severe problem, which will be discussed in the context of electrocatalysis. One way to overcome this problem is to use an alkaline membrane (conducting, e.g., by the hydroxyl anion, OH ), in which medium the kinetics of the electrochemical reactions involved are faster than in an acidic medium, and then to develop the solid alkaline membrane fuel cell (SAMFC). [Pg.5]

The new type of direct ethanol fuel cell described by An et al. [97] is composed of an alkaline anode and an acid cathode separated by a conducting charger (see Figure 15.5). The theoretical voltage of this system can be evaluated by means of the equations described in the paragraphs below. [Pg.440]

The performance of a direct ethanol fuel cell stack containing six cells each with acid-alkaline dual electrolytes. (Reprinted from S.A. Cheng and K.Y. Chan, High-voltage dual electrolyte electrochemical power sources, U.S. Patent 7,344,801,2008.)... [Pg.447]

Abstract The faster kinetics of the alcohol oxidation reaction in alkaline direct alcohol fuel cells (ADAFCs), opening up the possibility of using less expensive metal catalysts, as silver, nickel, and palladium, makes the alkaline direct alcohol fuel cell a potentially low-cost technology compared to acid direct alcohol fuel cell technology, which employs platinum catalysts. In this work an overview of catalysts for ADAFCs, and of testing of ADAFCs, fuelled with methanol, ethanol, and ethylene glycol, formed by these materials, is presented. [Pg.89]

Recent developments in AAEMs have opened up the possibiUty of an alkaline analog of the acidic solid polymer electrolyte fuel cell. This could utilize the benefits of the alkaline cathode kinetics and at the same time eradicate the disadvantages of using an aqueous electrolyte. As the AAEM is also a polymer electrolyte membrane (sometimes abbreviated as PEM), some clarity in abbreviations is required. In this chapter, PEM refers only to the proton exchange membrane fuel cells (acidic), AAEM refers to the anion exchange membrane H2/O2 fuel cells, and AFC exclusively refers to the aqueous electrolyte alkaline H2/O2 fuel cells. Anion exchange membranes are also employed in alkaline direct alcohol fuel cells, discussion of which will refer to them as ADMFC/ADEFC (methanol/ ethanol). [Pg.40]

Application of an acid-alkaline concept to direct alcohol fuel cells has also been reporfed. Cheng and Chan [29] reported operation of a 6-cell slack of dual pH elecfrolyte fuel cell using ethanol fuel. A BPM MB-3 supplied by Membrane Technology Centre (Russia) was used. Each anode chamber contained 4 mL 7 mol L NaOH and 0.5 mol ethanol. Each cathode chamber... [Pg.446]

PANI-NTs synthesized by a template method on commercial carbon cloth have been used as the catalyst support for Pt particles for the electro-oxidation of methanol [501]. The Pt-incorporated PANl-NT electrode exhibited excellent catalytic activity and stabUity compared to 20 wt% Pt supported on VulcanXC 72R carbon and Pt supported on a conventional PANI electrode. The electrode fabrication used in this investigation is particularly attractive to adopt in solid polymer electrolyte-based fuel cells, which arc usually operated under methanol or hydrogen. The higher thermal stabUity of y-Mn02 nanoparticles-coated PANI-NFs on carbon electrodes and their activity in formic acid oxidation pomits the realization of Pt-free anodes for formic acid fuel cells [260]. The exceUent electrocatalytic activity of Pd/ PANI-NFs film has recently been confirmed in the electro-oxidation reactions of formic acid in acidic media, and ethanol/methanol in alkaline medium, making it a potential candidate for direct fuel cells in both acidic and alkaline media [502]. [Pg.70]

Chapter 1 discusses the current status of electrocatalysts development for methanol and ethanol oxidation. Chapter 2 presents a systematic study of electrocatalysis of methanol oxidation on pure and Pt or Pd overlayer-modified tungsten carbide, which has similar catalytic behavior to Pt. Chapters 3 and 4 outline the understanding of formic acid oxidation mechanisms on Pt and non-Pt catalysts and recent development of advanced electrocatalysts for this reaction. The faster kinetics of the alcohol oxidation reaction in alkaline compared to acidic medium opens up the possibility of using less expensive metal catalysts. Chapters 5 and 6 discuss the applications of Pt and non-Pt-based catalysts for direct alcohol alkaline fuel cells. [Pg.752]

This chapter attempts to provide a critical review of the work carried out on alkaline fuel cell, which directly uses hydrogen rich liquid fuel and oxygen or air as an oxidant. The subjects covered are electrode materials, electrolyte, half-cell analysis and single cell performance in alkaline medium. Koscher et al. (2003) brought out elaborate review work on direct methanol alkaline fuel cell. Earlier Parsons et al. (1988) reviewed literature on anode electrode where, the oxidation of small organic molecules in acid as well as in alkaline conditions was considered. A review work on electro-oxidation of boron compounds was done by Morris et al. (1985). However, in this chapter use of three specific fuels, e.g., methanol, ethanol and sodium borohydride in alkaline fuel cell is discussed. [Pg.160]

The lifetime test of direct alcohol and sodium borohydride alkaline fuel cell was conducted and the results pertaining to this is shown in Fig. 30. The useful operating lifetime of 380, 400, 510 h was found for methanol, ethanol and sodium borohydride fuels, respectively. The deterioration of performance of fuel cell may be because of the carbonate precipitate, oxide layer formation and adsorbed intermediate species on catalyst surface. The used up electrodes could be regenerated by treating the electrode with hydrochloric acid. The acid treatment might have removed the carbonates and other species from the electrode. The treated electrodes could regain more than 80% of the catalytic activity. The maximum power density with 2 M fuel and 3 M KOH obtained was 21.5 mW cm at 33 mA cm of current density for sodium borohydride at 60°C, whereas, methanol and ethanol produce 15 and 16 mW cm" of maximum power... [Pg.183]


See other pages where Direct ethanol fuel cells alkaline-acid is mentioned: [Pg.116]    [Pg.110]    [Pg.437]    [Pg.90]    [Pg.120]    [Pg.437]    [Pg.33]    [Pg.43]    [Pg.176]   
See also in sourсe #XX -- [ Pg.440 ]




SEARCH



Acidic fuel cell

Alkaline cells

Direct ethanol fuel cell

Direct fuel cell

Ethanol acidity

Ethanol fuel cells

Ethanolic acid

Fuel alkaline

Fuel cells alkaline

Fuel direct ethanol

Fuel direction

Fuels ethanol

© 2024 chempedia.info