Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diradicals allylic

The transition state involves six partially delocalized electrons being transformed from one 1,5-diene system to another. The transition state could range in character from a 1,4-diradical to two nearly independent allyl radicals, depending on whether bond making or bond breaking is more advanced. The general framework for understanding the substituent effects is that the reactions are concerted with a relatively late transition state with well-developed C(l)—C(6) bonds. [Pg.626]

Alkyl derivatives of 1,3-butadiene usually undergo photosensitized Z-E isomerism when photosensitizers that can supply at least 60 kcal/mol are used. Two conformers of the diene, the s-Z and s-E, exist in equilibrium, so there are two nonidentical ground states from which excitation can occur. Two triplet excited states that do not readily interconvert are derived from the s-E and s-Z conformers. Theoretical calculations suggest that at their energy minimum the excited states of conjugated dienes can be described as an alkyl radical and an orthogonal allyl system called an allylmethylene diradical ... [Pg.772]

Acetylenedimagnesium bromide, 66, 84, 137 Acyl-alkyl diradical disproportionations, 299 Acyl-alkyl diradical recombination, 296 Alkaline hydrogen peroxide, 10, 12, 20 Alkylation of formyl ketones, 93 Alkylation via enolate anions, 86 17a-Alkynyl steroids from 17-ketones, 67 2a-Al]yl-17jS-hydroxy-5a-androstan-3 -one, 9 5 Allylic acetoxylation, 242 Allylmagnesium bromide, 64 17 -Aminoandrost-5-en-3 -ol, 145 17 a-Aminomethy 1-5 a-androstane-3, 1718-diol, 387... [Pg.456]

The overall reaction includes allylic transposition of a double bond, migration of the allylic hydrogen and formation of a bond between ene and enophile. Experimental findings suggest a concerted mechanism. Alternatively a diradical species 4 might be formed as intermediate however such a species should also give rise to formation of a cyclobutane derivative 5 as a side-product. If such a by-product is not observed, one might exclude the diradical pathway ... [Pg.104]

The group ofWalborsky probably has described one of the first true anionic/radi-cal domino process in their synthesis of the spirocyclopropyl ether 2-733 starting from the tertiary allylic bromide 2-730 (Scheme 2.161) [369]. The first step is a Michael addition with methoxide which led to the malonate anion 2-731. It follows a displacement of the tertiary bromide and a subsequent ring closure which is thought to involve a SET from the anionic center to the carbon-bromine anti bonding orbital to produce the diradical 2-732 and a bromide anion. An obvious alternative Sn2 halide displacement was excluded due to steric reasons and the ease with which the reaction proceeded. [Pg.159]

In the case of the [4+ 2]-cycloadditions, the diradical analogous to 172 should contain an allyl radical subunit in the side-chain having the Z-configuration. There the closure of the six-membered ring occurs also employing the central carbon atom of the pentadienyl radical system. A quantum-chemical study reproduced the preference of the step 172 —y 163 over that from 172 to 173 [47]. This may have its origin in the higher spin density at C3 of the cyclohexadienyl radical as compared with Cl and C5 [108]. [Pg.274]

The dimer 352 of 351 was isolated from the product mixtures of two experiments conducted to trap 351 by alkenes, one with 350 and the other with 354 as substrate. Although no cycloadduct with the alkene was observed in one case, the yield of 352 amounted to only 0.8%. Nevertheless, the structure of 352 is interesting, since it suggests that the tetramethyleneethane diradical assumed to be the intermediate undergoes ring closure preferentially between two different allyl-radical termini. [Pg.305]

Hence the positional selectivity is different from that of the furan additions to 417 (Scheme 6.90). Assuming diradical intermediates for these reactions [9], the different types of products are not caused by the nature of the allene double bonds of 417 and 450 but by the properties of the allyl radical subunits in the six-membered rings of the intermediates. Also N-tert-butoxycarbonylpyrrole intercepted 450 in a [4 + 2]-cycloaddition and brought about 455 in 29% yield. Pyrrole itself and N-methylpyr-role furnished their substituted derivatives of type 456 in 69 and 79% yield [155, 171b]. Possibly, these processes are electrophilic aromatic substitutions with 450 acting as electrophile, as has been suggested for the conversion of 417 into 442 by pyrrole (Scheme 6.90). [Pg.323]

Concerning the structure, the cyclopropane derivatives 524—526 deviate from the generally observed cycloadducts of cyclic allenes with monoalkenes (see Scheme 6.97 and many examples in Section 6.3). The difference is caused by the different properties of the diradical intermediates that are most likely to result in the first reaction step. In most cases, the allene subunit is converted in that step into an allyl radical moiety that can cyclize only to give a methylenecyclobutane derivative. However, 5 is converted to a tropenyl-radical entity, which can collapse with the radical center of the side-chain to give a methylenecyclobutane or a cyclopropane derivative. Of these alternatives, the formation of the three-membered ring is kinetically favored and hence 524—526 are the products. The structural relationship between both possible product types is made clear in Scheme 6.107 by the example of the reaction between 5 and styrene. [Pg.337]

The C1-C2 bond is quite weak. Homolysis of this bond gives a 1,3-diradical at Cl and C2. The Cl radical is allylically delocalized onto C4, also. Combination of the C2 radical with with the C4 radical gives the product. [Pg.150]

Tetramethylene-ethane (TME), or 2,2/-bis-allyl diradical 81, was suggested as an intermediate in the thermal dimerization of allene, as well as in the interconversions of 1,2-dimethylenecyclobutane 82, methylenespiropentane 83, bis-cyclopropylidene 84 and other bicyclic systems (equation 30)45. The isolation of two different isomeric dimethylene cyclobutanes 87 and 88 (in a ca 2 I ratio) after the thermal rearrangement of the deuteriated 1,2-dimethylene cyclobutane 85 suggests that the rearrangement proceeds via a perpendicular tetramethyleneethane diradical (2,2/-bisallyl) 86 (equation 31)45. [Pg.753]

Such a reaction may occur on treatment of the benzo-fused bicyclic sulfonium salt 37 with various bases under aerobic conditions. The incipient allylic diradical 39 is trapped as 1,3-diradical by molecular oxygen to give a mixture of up to 35% diastereomeric Spiro-1,2-dioxolanes 40. The spirocyclopentene 41 is obtained in a competing path in which allylic diradical 39 is cyclized as a 1,5-carbon-centered diradicaE . [Pg.196]

Variation of the olefin also has an effect on kaaa//cab3. For example, the irradiation of benzophenone in 1-methylcyclohexene gives a moderate yield of the oxetane (even though there are three more allylic hydrogens on this olefin as compared to cyclohexene). Isobutylene too gives much higher yields of the oxetane than 1-butene.37,66 The controlling factor in these cases may be the increased stability of the diradical intermediates. [Pg.322]


See other pages where Diradicals allylic is mentioned: [Pg.385]    [Pg.634]    [Pg.740]    [Pg.47]    [Pg.528]    [Pg.434]    [Pg.27]    [Pg.112]    [Pg.491]    [Pg.39]    [Pg.46]    [Pg.244]    [Pg.248]    [Pg.251]    [Pg.258]    [Pg.259]    [Pg.259]    [Pg.265]    [Pg.274]    [Pg.288]    [Pg.310]    [Pg.310]    [Pg.319]    [Pg.331]    [Pg.338]    [Pg.819]    [Pg.191]    [Pg.535]    [Pg.565]    [Pg.333]    [Pg.193]    [Pg.193]   
See also in sourсe #XX -- [ Pg.193 , Pg.194 ]




SEARCH



Bis , allylic diradicals

Diradical

Diradicals

© 2024 chempedia.info