Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dirac -Coulomb-Breit operator

Spin-orbit interaction Hamiltonians are most elegantly derived by reducing the relativistic four-component Dirac-Coulomb-Breit operator to two components and separating spin-independent and spin-dependent terms. This reduction can be achieved in many different ways for more details refer to the recent literature (e.g., Refs. 17-21). [Pg.125]

The practical question remains how can we find bound-state solutions of equations based on the Dirac-Coulomb-Breit operator The naive approach to the solution of a He-like problem would be to assume that the two-electron wavefunction, can be written as a complete-set expansion of the form... [Pg.14]

One seemingly sensible approach to the relativistic electronic structure theory is to employ perturbation theory. This has the apparent advantage of representing supposedly small relativistic effects as corrections to a familiar non-relativistic problem. In Appendix 4 of Methods of molecular quantum mechanics, we find the terms which arise in the reduction of the Dirac-Coulomb-Breit operator to Breit-Pauli form by use of the Foldy-Wouthuysen transformation, broken into electronic, nuclear, and electron-nuclear effects. FVom a purely aesthetic point of view, this approach immediately looks rather unattractive because of the proliferation of terms at the first order of perturbation theory. To make matters worse, many of the terms listed are singular, and it is presumably the variational divergences introduced by these operators which are referred to in [2]. Worse still, higher-order terms in the Foldy-Wouthuysen transformation used in this way yield a mathematically invalid expansion. [Pg.21]

Based on the Dirac-Coulomb-Breit operator, most known methods of quantum-chemical ab initio electronic structure determination have been implemented by now also for four-component spinors. This comprises time-honoured pioneering work on atoms in the Dirac-Hartree-Fock framework, using numerical techniques and basis set expansion techniques, " as well as work for molecules in Dirac-Har tree-Fock approximations with global basis sets " or finite elements and elaborate techniques to treat relativity and correlation on the same footing. " ... [Pg.2503]

The Dirac-Coulomb-Breit Hamiltonian H qb 1 rewritten in second-quantized form [6, 16] in terms of normal-ordered products of spinor creation and annihilation operators r+s and r+s+ut, ... [Pg.317]

By inserting the equations defining the kinetic energy operators and the pairwise interaction operators into Eq. (8) we obtain the Dirac-Coulomb-Breit Hamiltonian, which is in chemistry usually considered the fully relativistic reference Hamiltonian. [Pg.183]

From the four-component Dirac-Coulomb-Breit equation, the terms [99]—[102] can be deduced without assuming external fields. A Foldy-Wouthuysen transformation23 of the electron-nuclear Coulomb attraction and collecting terms to order v1 /c1 yields the one-electron part [99], Similarly, the two-electron part [100] of the spin-same-orbit operator stems from the transformation of the two-electron Coulomb interaction. The spin-other-orbit terms [101] and [102] have a different origin. They result, among other terms, from the reduction of the Gaunt interaction. [Pg.126]

In this notation the presence of two upper and two lower components of the four-component Dirac spinor fa is emphasized. For solutions with positive energy and weak potentials, the latter is suppressed by a factor 1 /c2 with respect to the former, and therefore commonly dubbed the small component fa, as opposed to the large component fa. While a Hamiltonian for a many-electron system like an atom or a molecule requires an electron interaction term (in the simplest form we add the Coulomb interaction and obtain the Dirac-Coulomb-Breit Hamiltonian see Chapter 2), we focus here on the one-electron operator and discuss how it may be transformed to two components in order to integrate out the degrees of freedom of the charge-conjugated particle, which we do not want to consider explicitly. [Pg.92]

If a multiparticle system is considered and the election interaction is introduced, we may use the Dirac-Coulomb-Breit (DCB) Hamiltonian which is given by a sum of one-particle Dirac operators coupled by the Coulomb interaction 1 /r,7 and the Breit interaction Bij. Applying the Douglas-Kroll transformation to the DCB Hamiltonian, we arrive at the following operator (Hess 1997 Samzow and Hess 1991 Samzow et al. 1992), where an obvious shorthand notation for the indices pi has been used ... [Pg.96]

Having defined our starting point, the second quantized no-pair Hamiltonian, we may now take a closer look at the relations between the matrix elements. For future convenience we will also change the notation of these matrix elements slightly. Due to hermiticity of the Dirac Hamiltonian and the Coulomb-Breit operator we have... [Pg.302]

The spectrum of the single-electron Dirac operator Hd and its eigenspinors (/> for Coulombic potentials are known in analytical form since the early days of relativistic quantum mechanics. However, this is no longer true for a many-electron system like an atom or a molecule being described by a many-particle Hamiltonian H, which is the sum of one-electron Dirac Hamiltonians of the above kind and suitably chosen interaction terms. One of the simplest choices for the electron interaction yields the Dirac-Coulomb-Breit (DCB) Hamiltonian, where only the frequency-independent first-order correction to the instantaneous Coulomb interaction is included. [Pg.624]

Since the Dirac equation is valid only for the one-electron system, the one-electron Dirac Hamiltonian has to be extended to the many-electron Hamiltonian in order to treat the chemically interesting many-electron systems. The straightforward way to construct the relativistic many-electron Hamiltonian is to augment the one-electron Dirac operator, Eq. (70) with the Coulomb or Breit (or its approximate Gaunt) operator as a two-electron term. This procedure yields the Dirac-Coulomb (DC) or Dirac-Coulomb-Breit (DCB) Hamiltonian derived from quantum electrodynamics (QED)... [Pg.541]

A full relativistic theory for coupling tensors within the polarization propagator approach at the RPA level was presented as a generalization of the nonrelativistic theory. Relativistic calculations using the PP formalism have three requirements, namely (i) all operators representing perturbations must be given in relativistic form (ii) the zeroth-order Hamiltonian must be the Dirac-Coulomb-Breit Hamiltonian, /foBC, or some approximation to it and (iii) the electronic states must be relativistic spin-orbitals within the particle-hole or normal ordered representation. Aucar and Oddershede used the particle-hole Dirac-Coulomb-Breit Hamiltonian in the no-pair approach as a starting point, Eq. (18),... [Pg.84]

The reduction of the relativistic many-electron hamiltonian by expansion in powers of the external field is the second-order Douglas-Kroll transformation [29], and has been used with success by Hess and co-workers [30]. The operators which result from this transformation are non-singular, but the integrals over the resulting operators are complicated and have to be approximated, even for finite basis set expansions. The reduction of the Dirac-Coulomb-Breit equation to two-component form using direct perturbation theory has been described by Kutzelnigg and coworkers [26, 27, 31], Rutkowski [32], and van Lenthe et al. [33]. [Pg.22]

Thus we have the situation that the current four-component methods are based on the so-called Dirac-Coulomb-Breit (DCB) operator (or the Dirac-Coulomb operator, if the Breit interaction is omitted). The DCB Hamiltonian is not covariant with respect to formulation in another inertial frame of reference, although the epithet fully relativistic is often used. [Pg.2503]

Here frs and (ri-l tM> are, respectively, elements of one-electron Dirac-Fock and antisymmetrized two-electron Coulomb-Breit interaction matrices over Dirac four-component spinors. The effect of the projection operators is now taken over by the normal ordering, denoted by the curly braces in (15), which requires annihilation operators to be moved to the right of creation operators as if all anticommutation relations vanish. The Fermi level is set at the top of the highest occupied positive-energy state, and the negative-energy states are ignored. [Pg.164]


See other pages where Dirac -Coulomb-Breit operator is mentioned: [Pg.135]    [Pg.135]    [Pg.124]    [Pg.301]    [Pg.13]    [Pg.14]    [Pg.135]    [Pg.2499]    [Pg.135]    [Pg.135]    [Pg.124]    [Pg.301]    [Pg.13]    [Pg.14]    [Pg.135]    [Pg.2499]    [Pg.265]    [Pg.270]    [Pg.93]    [Pg.153]    [Pg.304]    [Pg.120]    [Pg.82]    [Pg.420]    [Pg.23]    [Pg.303]    [Pg.637]    [Pg.285]    [Pg.341]    [Pg.518]    [Pg.16]    [Pg.314]    [Pg.2503]    [Pg.436]   
See also in sourсe #XX -- [ Pg.124 ]




SEARCH



Coulomb operator

Dirac-Coulomb

Operator Dirac

© 2024 chempedia.info