Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipolar diastereoselectivity

Using dioxolane as a substituent in the 1,3-dipolar cycloaddition of diazomethane with olefinic double bonds, it was found that the bulky dioxolane ring plays a major role in the diastereoselection [OOJOC388]. [Pg.24]

Whereas there are numerous examples of the application of the products from diastereoselective 1,3-dipolar cycloaddition reaction in synthesis [7, 8], there are only very few examples on the application of the products from metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction in the synthesis of potential target molecules. The reason for this may be due to the fact that most metal-catalyzed asymmetric 1,3-dipolar cycloaddition reaction have been carried out on model systems that have not been optimized for further derivatization. One exception of this is the synthesis of a / -lactam by Kobayashi and Kawamura [84]. The isoxazoli-dine endo-21h, which was obtained in 96% ee from the Yb(OTf)3-BINOL-catalyzed... [Pg.239]

A completely different dipolar cycloaddition model has been proposed39 in order to rationalize the stereochemical outcome of the addition of doubly deprotonated carboxylic acids to aldehydes, which is known as the Ivanov reaction. In the irreversible reaction of phenylacetic acid with 2,2-dimethylpropanal, metal chelation is completely unfavorable. Thus simple diastereoselectivity in favor of u f/-adducts is extremely low when chelating cations, e.g., Zn2 + or Mg- +, are used. Amazingly, the most naked dianions provide the highest anti/syn ratios as indicated by the results obtained with the potassium salt in the presence of a crown ether. [Pg.460]

Diastereoselective intramolecular cycloaddition of nitrones is useful for constructing nitrogen- containing cyclic structures. The reaction serves as a key step in a number of natural product syntheses.63 Tufarriello and coworkers have used this strategy for preparing cocaine and other alkaloids.74 As a classical example, enantioselective total synthesis of (+)-luciduline is presented in Scheme 8.13, in which a useful feature of the 1,3-dipolar addition of nitrones is nicely illustrated.75... [Pg.253]

Tandem transesterification and diastereoselective intramolecular 1,3-dipolar cycloaddition of a-methoxycarbonylnitrones with chiral allyl alcohols give polycyclic compounds in one step with high stereoselectivity (Scheme 8.14).76 Transition state Ain Scheme 8.14 is more favorable than B because B has severe steric interaction (allylic 1,3-strain).77... [Pg.253]

A series of 3-substituted-2-isoxazoles are prepared by the following simple procedure in situ conversion of nitroalkane to the silyl nitronate is followed by 1,3-dipolar cycloaddition to produce the adduct, which undergoes thermal elimination during distillation to furnish the isoxazole (Eq. 8.74). 5 Isoxazoles are useful synthetic intermediates (discussed in the chapter on nitrile oxides Section 8.2.2). Furthermore, the nucleophilic addition to the C=N bond leads to new heterocyclic systems. For example, the addition of diallyl zinc to 5-aryl-4,5-dihydroi-soxazole occurs with high diastereoselectivity (Eq. 8.75).126 Numerous synthetic applications of 1,3-dipolar cycloaddition of nitronates are summarized in work by Torssell and coworker.63a... [Pg.267]

High levels of asymmetric induction (97-74% ee) along with high diastereoselectivity (>99 1-64 36) were reported for asymmetric 1,3-dipolar cycloaddition reactions of fused azomethine imines 315 and 3-acryloyl-2-oxazolidinone 709 leading to 711 using a chiral BINIM-Ni(n) complex 710 as a chiral Lewis acid catalyst (Equation 100) <20070L97>. [Pg.470]

Regio- and diastereoselectivity in 1,3-dipolar cycloadditions of nitrile oxides to 4-substituted cyclopent-2-enones was studied (238, 239). The reactions are always regioselective, while the diastereofacial selectivity depends on the nature of the substituents. Thus, 4-hydroxy-4-methylcyclopent-2-enone (75) gives preferably adducts 76a, the 76a 76b ratio warying from 65 35 to 85 15 (Scheme 1.22). [Pg.32]

Carbohydrate derivatives with a spiroisoxazoline moiety, present in psammap-lysins and ceratinamides (metabolites isolated from marine sponges) have been prepared in good yields and excellent regio- and diastereoselectivity by a route involving Wittig olefination and 1,3-dipolar cycloaddition as key steps (477). [Pg.96]

A strategy based on the diastereoselective dipolar cycloaddition reaction of nitrile oxides and allylic alcoholates, has been applied to the synthesis of bis-(isoxazolines) that are precursors to polyketide fragments. These intermediates can be elaborated into protected polyols, for example, 439, by sequential chemos-elective reductive opening of each isoxazoline or, alternatively, by simultaneously, providing access to all stereoisomers of this carbon skeleton (479). [Pg.96]

Diastereoselective intramolecular 1,3-dipolar cycloadditions of alkylidene-cyclopropyl nitrones provide spirocyclopropylisoxazolidines. These compounds have been shown to undergo either thermally induced ring expansion to octahydro[l]pyrindin-4-ones or to acid induced ring contraction into fS-lactams with concomitant loss of ethylene (Scheme 2.218) (710-716). Use of chiral auxiliaries, that is (L)-2-acetoxylactate can lead to enantiomerically enriched heterocycles (715). [Pg.302]

Dipolar addition is closely related to the Diels-Alder reaction, but allows the formation of five-membered adducts, including cyclopentane derivatives. Like Diels-Alder reactions, 1,3-dipolar cycloaddition involves [4+2] concerted reaction of a 1,3-dipolar species (the An component and a dipolar In component). Very often, condensation of chiral acrylates with nitrile oxides or nitrones gives only modest diastereoselectivity.82 1,3-Dipolar cycloaddition between nitrones and alkenes is most useful and convenient for the preparation of iso-xazolidine derivatives, which can then be readily converted to 1,3-amino alcohol equivalents under mild conditions.83 The low selectivity of the 1,3-dipolar reaction can be overcome to some extent by introducing a chiral auxiliary to the substrate. As shown in Scheme 5-51, the reaction of 169 with acryloyl chloride connects the chiral sultam to the acrylic acid substrate, and subsequent cycloaddition yields product 170 with a diastereoselectivity of 90 10.84... [Pg.308]

Bis(oxazoline)-type complexes, which have been found useful for asymmetric aldol reactions, Diels-Alder, and hetero Diels-Alder reactions can also be used for inducing 1,3-dipolar reactions. Chiral nickel complex 180, which can be prepared by reacting equimolar amounts of Ni(C10)4 6H20 and the corresponding (J ,J )-4,6-dibenzofurandiyl-2,2 -bis(4-phenyloxazoline) (DBFOX/Ph) in dichloromethane, can be used for highly endo-selective and enantioselective asymmetric nitrone cycloaddition. The presence of 4 A molecular sieves is essential to attain high selectivities.88 In the absence of molecular sieves, both the diastereoselectivity and enantioselectivity will be lower. Representative results are shown in Scheme 5-55. [Pg.311]

When reacted with electron-rich enamines f ,)-R12N-CH=CH-Me, stable azomethine ylides 214 <1999T9515> undergo regioselective 1,3-dipolar cycloadditions giving rise to tetrahydropyrrolizines 215 as mixtures of cis- and trans-isomers with poor diastereoselectivity, which is an argument in favor of a two-step instead of a concerted mechanism (Scheme 51) <1999T9535>. [Pg.27]

A diastereoselective dipolar cycloaddition of chiral nitrone 80 with alkene dipolarophiles afforded imidazo[ 1,2-3]-isoaxazole (Scheme 9). The conversion via N-O reduction of this ring system with Raney-Ni in methanol gave the corresponding pyrrolo[l,2-A imidazole in 66% yield. The structure has been confirmed by X-ray diffraction crystal stmcture analysis <2000SL967>. [Pg.53]

Imidazoline 3-oxides 187 undergo regio- and diastereoselective 1,3-dipolar cyloaddidon with aryl isocyanates to give X-5,6,7,7a-tetrahydroimidazo[l,5- ][l,2,4]oxadiazoles 40 in good yields (Equation 80) <1997TL2299, 1997T13873>. [Pg.273]

Jprgensen and co-workers (247) investigated the asymmetric 1,3-dipolar cycloaddition reaction catalyzed by bis(oxazoline)-copper(II) complexes. In the presence of 25 mol% 269c, nitrone (401) reacts with ethyl vinyl ether and methoxypropene to afford the [3 + 2] adducts in modest diastereoselectivity and high enantioselectivity, Eq. 217. Ethyl vinyl ether preferentially forms the exo adduct while methoxypropene prefers the endo mode for reasons that are unclear. [Pg.127]

A study of the regioselectivity of the 1,3-dipolar cycloaddition of aliphatic nitrile oxides with cinnamic acid esters has been published. AMI MO studies on the gas-phase 1,3-dipolar cycloaddition of 1,2,4-triazepine and formonitrile oxide show that the mechanism leading to the most stable adduct is concerted. An ab initio study of the regiochemistry of 1,3-dipolar cycloadditions of diazomethane and formonitrile oxide with ethene, propene, and methyl vinyl ether has been presented. The 1,3-dipolar cycloaddition of mesitonitrile oxide with 4,7-phenanthroline yields both mono-and bis-adducts. Alkynyl(phenyl)iodonium triflates undergo 2 - - 3-cycloaddition with ethyl diazoacetate, Ai-f-butyl-a-phenyl nitrone and f-butyl nitrile oxide to produce substituted pyrroles, dihydroisoxazoles, and isoxazoles respectively." 2/3-Vinyl-franwoctahydro-l,3-benzoxazine (43) undergoes 1,3-dipolar cycloaddition with nitrile oxides with high diastereoselectivity (90% de) (Scheme IS)." " ... [Pg.460]

Many mechanisms had been proposed in the past to rationalize this selectivity (tri-oxanes, perepoxide, exciplex, dipolar or biradical intermediates) however, it is now generally accepted that the reaction proceeds through an intermediate exciplex which has the structural requirements of a perepoxide. This assumption is supported by (a) the lack of stereoselectivity in the reactions with chiral oxazolines and tiglic acid esters (b) the comparison of the diastereoselectivity of dialkyl substituted acrylic esters with structurally similar non-functionalized aUtenes (c) the intermolecular isotope effects in the photooxygenation of methyl tiglate and (d) the solvent effects on regioselectivity. ... [Pg.853]

A. RasteUi, R. Gandolfi, and M. Sarzi-Amade, Regioselectivity and Diastereoselectivity in the 1,3-dipolar Cycloadditions of Nitrones with Acrylonitrile and Maleonitrile. The Origin of ENDO/EXO Selectivity , in Advances in Quantum Chemistry, Vol. 36, Academic Press, New York, 1999, pp. 151-167. [Pg.82]


See other pages where Dipolar diastereoselectivity is mentioned: [Pg.311]    [Pg.212]    [Pg.216]    [Pg.224]    [Pg.227]    [Pg.233]    [Pg.41]    [Pg.46]    [Pg.65]    [Pg.628]    [Pg.216]    [Pg.217]    [Pg.187]    [Pg.433]    [Pg.416]    [Pg.137]    [Pg.250]    [Pg.252]    [Pg.39]    [Pg.325]    [Pg.396]    [Pg.311]    [Pg.169]    [Pg.458]    [Pg.439]    [Pg.261]    [Pg.814]    [Pg.817]    [Pg.33]    [Pg.193]    [Pg.197]   
See also in sourсe #XX -- [ Pg.439 ]

See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Diastereoselectivity 1,3-dipolar cycloadditions

Dipolar diastereoselective with chiral auxiliary

© 2024 chempedia.info