Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- Dipolar cycloadditions aziridines

Intramolecular and intermolecular 1,3-dipolar cycloadditions of aziridine-2-car-boxylic esters with alkenes and alkynes have been investigated [131, 132]. Upon heating, aziridine-2-carboxylates undergo C-2-C-3 bond cleavage to form azome-... [Pg.100]

Unactivated aziridines, such as 24, are not as reactive as their N-sulfonyl analogues. Nevertheless, in aqueous conditions they react with different nucleophiles, as Scheme 12.23 illustrates. Treatment with buffered azide at 50 °C gave 25 in 90% yield. Hydrazine proved potent even at room temperature and 26 was fonned in 95 % yield, while phenyltetrazole required heating at reflux in water. The resulting amines participated in dipolar cycloadditions with alkynes and condensations with P-diketones. [Pg.469]

Dipolar cycloaddition of azides with olefins provides a convenient access to triazolines, cyclic imines, and aziridines and hence is a valuable technique in heterocyclic synthesis. For instance, tricyclic -lactams 273 - 276 have been synthesized using the intramolecular azide-olefin cycloaddition (lAOC) methodology (Scheme 30) [71]. [Pg.39]

The overall pathway for the conversion of the unsaturated azido ether 281 to 2,5-dihydrooxazoles 282 involves first formation of the dipolar cycloaddition product 287, which thermolyzes to oxazoline 282 or is converted by silica gel to oxazolinoaziridine 288. While thermolysis or acid-catalyzed decomposition of triazolines to a mixture of imine and aziridine is well-documented [71,73], this chemoselective decomposition, depending on whether thermolysis or exposure to silica gel is used, is unprecedented. It is postulated that acidic surface sites on silica catalyze the triazoline decomposition via an intermediate resembling 289, which prefers to close to an aziridine 288. On the other hand, thermolysis of 287 may proceed via 290 (or the corresponding diradical) in which hydrogen migration is favored over ring closure. [Pg.42]

Another interesting variation of the 1,3-dipolar cycloaddition involves generation of 1,3-dipoles from three-membered rings. As an example, aziridines 7 and 8 give adducts derived from apparent formation of 1,3-dipoles 9 and 10, respectively.148... [Pg.531]

Synthetic work commenced with evaluation of an azomethine ylide dipole for the proposed intramolecular dipolar cycloaddition. A number of methods exist for the preparation of azomethine ylides, including, inter alia, transformations based on fluoride-mediated desilylation of a-silyliminium species, electrocyclic ring opening of aziridines, and tautomerization of a-amino acid ester imines [37]. In particular, the fluoride-mediated desilylation of a-silyliminium species, first reported by Vedejs in 1979 [38], is among the most widely used methods for the generation of non-stabilized azomethine ylides (Scheme 1.6). [Pg.9]

Carbalkoxy- and cyanosubstituted N-alkyl aziridines 421, however, undergo 1,3-dipolar cycloaddition to the C /C2 bond of diphenyl cyclopropenone followed by elimination of CO to form the dihydro pyrrole derivatives 422, which may lose HCN (when R2 = CN) yielding pyrroles 42323A ... [Pg.89]

The 1,3-dipolar cycloaddition reactions to unsaturated carbon-carbon bonds have been known for quite some time and have become an important part of strategies for organic synthesis of many compounds (Smith and March, 2007). The 1,3-dipolar compounds that participate in this reaction include many of those that can be drawn having charged resonance hybrid structures, such as azides, diazoalkanes, nitriles, azomethine ylides, and aziridines, among others. The heterocyclic ring structures formed as the result of this reaction typically are triazoline, triazole, or pyrrolidine derivatives. In all cases, the product is a 5-membered heterocycle that contains components of both reactants and occurs with a reduction in the total bond unsaturation. In addition, this type of cycloaddition reaction can be done using carbon-carbon double bonds or triple bonds (alkynes). [Pg.680]

Similarly, in a 1,3-dipolar cycloaddition of DMAD to the conformationally locked cyclic a-alkoxycarbonylnitrone (727), bicyclic ring systems, containing a nitrogen atom at the bridgehead position have been synthesized. A mechanistic interpretation of the origin of the fused pyrroles (729) includes the intermediate formation of the aziridine ring in (728) (Scheme 2.303) (820). [Pg.374]

The intermolecular reaction of imines with acceptor-substituted carbene complexes generally leads to the formation of azomethine ylides. These can undergo several types of transformation, such as ring closure to aziridines [1242-1245], 1,3-dipolar cycloadditions [1133,1243,1246-1248], or different types of rearrangement (Figure 4.9). [Pg.202]

In the examples presented in CHEC-II(1996) in which a pyridazin-3(2//)-one is the 1,3-dipolarophile, two types of 1,3-dipoles are used nitrile oxides and diazoalkanes. Two other 1,3-dipoles have to be mentioned now. The 1,3-dipolar cycloaddition of the azomethine ylide 95 generated in situ by thermal ring opening of dimethyl trans- -(A-methoxyphenyl)aziridine-2,3-dicarboxylate 94 to some 4- or 5-substituted 2-methylpyridazin-3(2//)-ones has been... [Pg.30]

In synthetic efforts toward the DNA reactive alkaloid naphthyridinomycin (164), Gamer and Ho (41) reported a series of studies into the constmction of the diazobicyclo[3.2.1]octane section. Constmction of the five-membered ring, by the photolytic conversion of an aziridine to an azomethine ylide and subsequent alkene 1,3-dipolar cycloaddition, was deemed the best synthetic tactic. Initial studies with menthol- and isonorborneol- tethered chiral dipolarophiles gave no facial selectivity in the adducts formed (42). However, utilizing Oppolzer s sultam as the chiral controlling unit led to a dramatic improvement. Treatment of ylide precursor 165 with the chiral dipolarophile 166 under photochemical conditions led to formation of the desired cycloadducts (Scheme 3.47). The reaction proceeded with an exo/endo ratio of only 2.4 1 however, the facial selectivity was good at >25 1 in favor of the desired re products. The products derived from si attack of the ylide... [Pg.199]

At about the same time, Wenkert and c-workers (75) reported a similar smdy into the intramolecular 1,3-dipolar cycloaddition of 2-alkenoyl-aziridine derived azomethine ylides. Thermolysis of 231 at moderate temperature (85 °C) produced 232 as a single isomer in 58% yield. Similarly, 233 furnished 234 in 67% yield. In each case, the same stereoisomers were produced regardless of the initial stereochemistry of the initial aziridine precursors. However, the reaction proved to be sensitive to both the substituents of the aziridine and tether length, as aziridines 235 and 236 furnished no cycloadducts, even at 200 °C (Scheme 3.79). [Pg.220]

Ogawa et al. (12) used an intramolecular azide-alkene cycloaddition strategy to synthesize the oxygen-bridged aza[15]annulene 52 and the aza[15]annulene dicar-boxylate 55 (Scheme 9.12). 1,3-Dipolar cycloaddition of vinyl azide to the acrylate moiety followed by extrusion of nitrogen gave the aziridine 51. Rearrangement of 51 afforded the aza[15]annulene 52. The same approach was used to synthesize the aza[15]annulene 55. [Pg.630]

Lin and Kadaba (23) reported the intermolecular 1,3-dipolar cycloadditions of aryl azides (110) with vinyl pyridines (111) to give a mixture of pyridyltriazolines (112) and aziridines (113) (Scheme 9.23). [Pg.636]

Molander and Hiersemann (60) reported the preparation of the spirocyclic keto aziridine intermediate 302 in an approach to the total synthesis of (zb)-cephalotax-ine (304) via an intramolecular 1,3-dipolar cycloaddition of an azide with an electron-deficient alkene (Scheme 9.60). The required azide 301 was prepared by coupling the vinyl iodide 299 and the aryl zinc chloride 300 using a Pd(0) catalyst in the presence of fni-2-furylphosphine. Intramolecular 1,3-dipolar cycloaddition of the azido enone 301 in boiling xylene afforded the desired keto aziridine 302 in 76% yield. Hydroxylation of 302 according to Davis s procedure followed by oxidation with Dess-Martin periodinane delivered the compound 303, which was converted to the target molecule (i)-cephalotaxine (304). [Pg.662]

Chiral aziridines having the chiral moiety attached to the nitrogen atom have also been applied for diastereoselective formation of optically active pyrrolidine derivatives. In the first example, aziridines were used as precursors for azomethine ylides (90-95). Photolysis of the aziridine 57 produced the azomethine ylide 58, which was found to add smoothly to methyl acrylate (Scheme 12.20) (91,93-95). The 1,3-dipolar cycloaddition proceeded with little or no de, but this was not surprising, as the chiral center in 58 is somewhat remote from the reacting centers... [Pg.831]

Garner et al. (90,320) used aziridines substituted with Oppolzer s sultam as azomethine ylide precursors. The azomethine ylide generated from 206 added to various electron-dehcient alkenes, such as dimethyl maleate, A-phenylmalei-mide, and methyl acrylate, giving the 1,3-dipolar cycloaddition product in good yields and up to 82% de (for A-phenylmaleimide). They also used familiar azomethine ylides formed by imine tautomerization (320). Aziridines such as 207 have also been used as precursors for the chiral azomethine ylides, but in reactions with vinylene carbonates, relatively low de values were obtained (Scheme 12.59) (92). [Pg.860]


See other pages where 1.3- Dipolar cycloadditions aziridines is mentioned: [Pg.85]    [Pg.85]    [Pg.28]    [Pg.88]    [Pg.89]    [Pg.28]    [Pg.39]    [Pg.934]    [Pg.151]    [Pg.298]    [Pg.216]    [Pg.220]    [Pg.634]    [Pg.658]    [Pg.668]    [Pg.243]    [Pg.28]    [Pg.63]    [Pg.88]    [Pg.89]    [Pg.473]    [Pg.497]    [Pg.507]   
See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.174 ]




SEARCH



1.3- dipolar cycloaddition reactions substituted aziridines

Aziridines azide 1,3-dipolar cycloadditions, natural product

Aziridines cycloaddition

Aziridines cycloadditions

© 2024 chempedia.info