Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aziridines cycloadditions

Sulfonium ylides may be added to C N double bonds to yield aziridines in a formal [1 -t-2]-cycloaddition. Alkyl azides are decomposed upon heating or irradiating to yield ni-trenes, which may also undergo [ 1 + 2 -cycloaddition reactions to yield highly strained hetero-cycles (A.G. Hortmann, 1972). [Pg.154]

The two-bond disconnection (re/ro-cycloaddition) approach also often works very well if the target molecule contains three-, four-, or five-membered rings (see section 1.13 and 2.5). The following tricyclic aziridine can be transformed by one step into a monocyclic amine (W. Nagata, 1968). In synthesis one would have to convert the amine into a nitrene, which-would add spontcaneously to a C—C double bond in the vicinity. [Pg.212]

More recently, Cheeseman and coworkers have investigated cycloaddition reactions of 2,6-dioxypyrazines (80jCS(Pl)1603). 2,6-Dihydroxy-3,5-diphenylpyrazine (77) reacts with electron deficient dienophiles such as iV-phenylmaleimide, diethyl maleate and diethyl fumarate (Scheme 26) to yield adducts of the 3,8-diazabicyclo[3.2.1]octane class such as (78). This reaction is believed to proceed by way of the betaine (79) and has precedent (69AG(E)604) in that photolysis of the bicyclic aziridine (80) generates analogous betaines which have been trapped in cycloaddition reactions. [Pg.175]

Cycloaddition reactions of aziridines with a wide assortment of dipolarophiles have been studied. The reaction of dialkyl azodicarboxylates with the cf5-aziridine (27) is stereospecific... [Pg.53]

Cycloadditions of aziridines to diphenylcyclopropenone lead to 4-oxazolines (36) (70CJC89). A mechanism involving initial addition to the cyclopropenone carbonyl group followed by ring opening and recyclization was suggested. [Pg.55]

Aziridines, e.g. (91), undergo thermal ring opening in a conrotatory manner to generate azomethine ylides. These azomethine ylides are 47r-components and can participate in [4 + 2] cycloadditions with 1-azirines acting as the 27r-component 73HCA1351). [Pg.60]

There is only one report in the literature of a [3-1-3] cycloaddition involving TMM and activated aziridines to give the corresponding piperidine (124) [44]. The formation of the six-membered ring adduct is presumed to proceed via the ringopening of the aziridine by the attack of TMM complex (2) on the least hindered carbon, which is then followed by an intramolecular cyclization (Scheme 2.34). [Pg.82]

A novel guanidinium ylide-mediated procedure has recently been reported by Ishi-kawa [62]. Though not an imine transformation, it does employ an imine precursor in the fonn of an aldehyde. Guanidinium ylides react with aldehydes to form aziridines (Scheme 1.35). The mechanism for the formation of the aziridine is believed to involve [3+2] cycloaddition between the guanidinium ylide 112 and the aldehyde, followed by stereospecific extrusion of the urea with concomitant aziridine formation. [Pg.29]

Cycloadditions of isocyanates and their derivatives with vinyiaziridines were first reported by Alper and coworkers. From their previous studies of cydoadditions to vinylepoxides or alkylaziridines, they investigated cydoadditions to vinyiaziridines and found that such reactions with isocyanates, carbodiimides, or isothiocyanates in the presence of catalytic amounts of Pd(OAc)2 (2 mol%) and PPh3 (10 mol%) at room temperature afforded five-membered ring products 249 in 34—97% yields (Scheme 2.61) [91]. When an aziridine 247 possessing an alkyl substituent at the... [Pg.65]

Intramolecular and intermolecular 1,3-dipolar cycloadditions of aziridine-2-car-boxylic esters with alkenes and alkynes have been investigated [131, 132]. Upon heating, aziridine-2-carboxylates undergo C-2-C-3 bond cleavage to form azome-... [Pg.100]

Cycloaddition reactions of aziridine-2-carboxylic esters have also been used... [Pg.109]

Another conceptually unique approach in alkene aziridination has come from Johnston s labs. These workers shrewdly identified organic azides as nitrene equivalents when these compounds are in the amide anion/diazonium resonance form. Thus, when a range of azides were treated with triflic acid and methyl vinyl ketone at 0 °C, the corresponding aziridines were obtained, in synthetically useful yields. In the absence of the Bronsted acid catalyst, cycloaddition is observed, producing triazolines. The method may also be adapted, through the use of unsaturated imi-des as substrates, to give anti-aminooxazolidinones (Scheme 4.25) [32]. [Pg.129]

Unactivated aziridines, such as 24, are not as reactive as their N-sulfonyl analogues. Nevertheless, in aqueous conditions they react with different nucleophiles, as Scheme 12.23 illustrates. Treatment with buffered azide at 50 °C gave 25 in 90% yield. Hydrazine proved potent even at room temperature and 26 was fonned in 95 % yield, while phenyltetrazole required heating at reflux in water. The resulting amines participated in dipolar cycloadditions with alkynes and condensations with P-diketones. [Pg.469]

Dipolar cycloaddition of azides with olefins provides a convenient access to triazolines, cyclic imines, and aziridines and hence is a valuable technique in heterocyclic synthesis. For instance, tricyclic -lactams 273 - 276 have been synthesized using the intramolecular azide-olefin cycloaddition (lAOC) methodology (Scheme 30) [71]. [Pg.39]

The overall pathway for the conversion of the unsaturated azido ether 281 to 2,5-dihydrooxazoles 282 involves first formation of the dipolar cycloaddition product 287, which thermolyzes to oxazoline 282 or is converted by silica gel to oxazolinoaziridine 288. While thermolysis or acid-catalyzed decomposition of triazolines to a mixture of imine and aziridine is well-documented [71,73], this chemoselective decomposition, depending on whether thermolysis or exposure to silica gel is used, is unprecedented. It is postulated that acidic surface sites on silica catalyze the triazoline decomposition via an intermediate resembling 289, which prefers to close to an aziridine 288. On the other hand, thermolysis of 287 may proceed via 290 (or the corresponding diradical) in which hydrogen migration is favored over ring closure. [Pg.42]

The highly strained and reactive 2iT-azirines have been extensively studied for various synthetic purposes, such as ring expansion reactions, cycloaddition reactions, preparation of functionalized amines and substituted aziridines. The older literature on azirines in synthesis has extensively been reviewed [69]. Concerning azirines with defined chirality only scarce information is available. Practically all reactions of azirines take place at the activated imine bond. Reduction with sodium borohydride leads to cz5-substituted aziridines as is shown in Scheme 48 [26,28]. [Pg.121]

Another interesting variation of the 1,3-dipolar cycloaddition involves generation of 1,3-dipoles from three-membered rings. As an example, aziridines 7 and 8 give adducts derived from apparent formation of 1,3-dipoles 9 and 10, respectively.148... [Pg.531]

Synthetic work commenced with evaluation of an azomethine ylide dipole for the proposed intramolecular dipolar cycloaddition. A number of methods exist for the preparation of azomethine ylides, including, inter alia, transformations based on fluoride-mediated desilylation of a-silyliminium species, electrocyclic ring opening of aziridines, and tautomerization of a-amino acid ester imines [37]. In particular, the fluoride-mediated desilylation of a-silyliminium species, first reported by Vedejs in 1979 [38], is among the most widely used methods for the generation of non-stabilized azomethine ylides (Scheme 1.6). [Pg.9]

Triazole derivatives also result from the cycloaddition of DEAZD to azomethine ylids derived from electrocyclic ring opening of aziridines.117 121 For example, the tetrahydro-1,2,4-triazole 73 was prepared by thermolysis of the cts-aziridine in the presence of DEAZD in 96% yield (Eq. 8), and... [Pg.20]

Carbalkoxy- and cyanosubstituted N-alkyl aziridines 421, however, undergo 1,3-dipolar cycloaddition to the C /C2 bond of diphenyl cyclopropenone followed by elimination of CO to form the dihydro pyrrole derivatives 422, which may lose HCN (when R2 = CN) yielding pyrroles 42323A ... [Pg.89]

The 1,3-dipolar cycloaddition reactions to unsaturated carbon-carbon bonds have been known for quite some time and have become an important part of strategies for organic synthesis of many compounds (Smith and March, 2007). The 1,3-dipolar compounds that participate in this reaction include many of those that can be drawn having charged resonance hybrid structures, such as azides, diazoalkanes, nitriles, azomethine ylides, and aziridines, among others. The heterocyclic ring structures formed as the result of this reaction typically are triazoline, triazole, or pyrrolidine derivatives. In all cases, the product is a 5-membered heterocycle that contains components of both reactants and occurs with a reduction in the total bond unsaturation. In addition, this type of cycloaddition reaction can be done using carbon-carbon double bonds or triple bonds (alkynes). [Pg.680]


See other pages where Aziridines cycloadditions is mentioned: [Pg.326]    [Pg.475]    [Pg.326]    [Pg.475]    [Pg.28]    [Pg.53]    [Pg.53]    [Pg.55]    [Pg.73]    [Pg.86]    [Pg.88]    [Pg.89]    [Pg.90]    [Pg.91]    [Pg.92]    [Pg.526]    [Pg.150]    [Pg.82]    [Pg.30]    [Pg.38]    [Pg.110]    [Pg.261]    [Pg.170]    [Pg.181]    [Pg.105]    [Pg.142]    [Pg.221]   
See also in sourсe #XX -- [ Pg.831 , Pg.832 ]




SEARCH



1.3- Dipolar cycloadditions aziridines

1.3- dipolar cycloaddition reactions substituted aziridines

Aziridination 3 + 2-cycloaddition

Aziridines azide 1,3-dipolar cycloadditions, natural product

Aziridines cycloaddition

Aziridines cycloaddition

Aziridines cycloaddition reactions

Aziridines intramolecular cycloadditions, precursors

Azomethine ylides, cycloaddition with aziridines

Azomethine ylides, cycloaddition with substituted aziridines

Cycloaddition of CO2 with aziridines

Cycloaddition of aziridines

Cycloaddition reactions aziridine precursors

Intramolecular cycloadditions aziridine precursors

© 2024 chempedia.info