Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- Dipolar cycloaddition reactions reaction

Dipolar cycloaddition reactions with azides, imines, and nitrile oxides afford synthetic routes to nitrogen-containing heterocycles (25—30). [Pg.246]

Most ozonolysis reaction products are postulated to form by the reaction of the 1,3-zwitterion with the extmded carbonyl compound in a 1,3-dipolar cycloaddition reaction to produce stable 1,2,4-trioxanes (ozonides) (17) as shown with itself (dimerization) to form cycHc diperoxides (4) or with protic solvents, such as alcohols, carboxyUc acids, etc, to form a-substituted alkyl hydroperoxides. The latter can form other peroxidic products, depending on reactants, reaction conditions, and solvent. [Pg.117]

There is a large elass of reactions known as 1,3-dipolar cycloaddition reactions that are analogous to the Diels-Alder reaction in that they are coneerted [4jc -I- 2jc] eyeloaddi-tions. ° These reactions can be represented as in the following diagram. The entity a—b—c is called the 1,3-dipolar molecule and d—e is the dipolarophile. [Pg.646]

The stereochemistry of the 1,3-dipolar cycloaddition reaction is analogous to that of the Diels-Alder reaction and is a stereospecific syn addition. Diazomethane, for example, adds stereospecifically to the diesters 43 and 44 to yield the pyrazolines 45 and 46, respectively. [Pg.646]

Azidofurazans and -furoxans undergo dipolar cycloaddition reactions with unsaturated compounds, in some cases regiospecifically. Thus, reaction of 3-amino-4-azidofurazan with l-morpholinyl-2-nitroethene (toluene, reflux, 70 hours) gives 4-nitro-l,2,3-triazole 204 in 87% yield (99MI1, 000KGS406). Cycloaddition of the same azide to alkynes was accomplished by formation of a mixture of position isomers 205 and 206. Regiospecific addition was observed only in singular cases... [Pg.130]

Similarly, the regiospecific 1,3-dipolar cycloaddition reaction of 1-methyl-1,2-dihydropyridines 41 with cyanogen azide (50a) and selected organic azides 50c and 50g afforded 2-methyl-2,7-diazabicyclo[4.1.0]hept-4-enes 57, which can be elaborated to 1-methyl-l,2,5,6-tetrahydropyridylidene-2-cyanamide (58) and 1-methyl-2-piperidylidenes 59a-d (85CJC2362). [Pg.279]

Asymmetric Metal-catalyzed 1,3-Dipolar Cycloaddition Reactions... [Pg.210]

The 1,3-dipoles consist of elements from main groups IV, V, and VI. The parent 1,3-dipoles consist of elements from the second row and the central atom of the dipole is limited to N or O [10]. Thus, a limited number of structures can be formed by permutations of N, C, and O. If higher row elements are excluded twelve allyl anion type and six propargyl/allenyl anion type 1,3-dipoles can be obtained. However, metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions have only been explored for the five types of dipole shown in Scheme 6.2. [Pg.212]

Basic Aspects of Metal-catalyzed 1,3-Dipolar Cycloaddition Reactions 215 The normal electron-demand 1,3-dlpolar cycloaddition reaction... [Pg.215]

In the 1,3-dipolar cycloaddition reactions of especially allyl anion type 1,3-dipoles with alkenes the formation of diastereomers has to be considered. In reactions of nitrones with a terminal alkene the nitrone can approach the alkene in an endo or an exo fashion giving rise to two different diastereomers. The nomenclature endo and exo is well known from the Diels-Alder reaction [3]. The endo isomer arises from the reaction in which the nitrogen atom of the dipole points in the same direction as the substituent of the alkene as outlined in Scheme 6.7. However, compared with the Diels-Alder reaction in which the endo transition state is stabilized by secondary 7t-orbital interactions, the actual interaction of the N-nitrone p -orbital with a vicinal p -orbital on the alkene, and thus the stabilization, is small [25]. The endojexo selectivity in the 1,3-dipolar cycloaddition reaction is therefore primarily controlled by the structure of the substrates or by a catalyst. [Pg.217]

Finally, there is the enantioselectivity of the 1,3-dipolar cycloaddition reactions. This chapter is limited to describing only the metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions that involve non-chiral starting materials. The only fac-... [Pg.217]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

In an extension of this work Scheeren et al. studied a series of derivatives of N-to-syl-oxazaborolidinones as catalysts for the 1,3-dipolar cycloaddition reaction of 1 with 2b [29]. The addition of a co-solvent appeared to be of major importance. Catalyst 3b was synthesized from the corresponding amino acid and BH3-THF, hence, THF was present as a co-solvent. In this reaction (-)-4b was obtained with 62% ee. If the catalyst instead was synthesized from the amino acid and... [Pg.218]

In a more recent work the same research group has applied cyclic and acyclic vinyl ethers in the oxazaborolidinone-catalyzed 1,3-dipolar cycloaddition reaction with nitrones [30]. The reaction between nitrone 5 and 2,3-dihydrofuran 6 with 20 mol% of the phenyl glycine-derived catalyst 3c, gave the product 7 in 56% yield as the sole diastereomer, however, with a low ee of 38% (Scheme 6.9). [Pg.219]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

A model for the mechanism of the highly enantioselective AlMe-BINOL-cata-lyzed 1,3-dipolar cycloaddition reaction was proposed as illustrated in Scheme 6.13. In the first step nitrone la coordinates to the catalyst 11b to form intermediate 12. In intermediate 13, which is proposed to account for the absolute stereoselectivity of this reaction, it is apparent that one of the faces of the nitrone, the si face, is shielded by the ligand whereas the re face remains available... [Pg.220]

The above described reaction has been extended to the application of the AlMe-BINOL catalyst to reactions of acyclic nitrones. A series chiral AlMe-3,3 -diaryl-BINOL complexes llb-f was investigated as catalysts for the 1,3-dipolar cycloaddition reaction between the cyclic nitrone 14a and ethyl vinyl ether 8a [34], Surprisingly, these catalysts were not sufficiently selective for the reactions of cyclic nitrones with ethyl vinyl ether. Use of the tetramethoxy-substituted derivative llg as the catalyst for the reaction significantly improved the results (Scheme 6.14). In the presence of 10 mol% llg the reaction proceeded in a mixture of CH2CI2 and petroleum ether to give the product 15a in 79% isolated yield. The diastereoselectiv-ity was the same as in the acyclic case giving an excellent ratio of exo-15a and endo-15a of >95 <5, and exo-15a was obtained with up to 82% ee. [Pg.222]

A rather unexpected discovery was made in connection to these investigations [49]. When the 1,3-dipolar cycloaddition reaction of la with 19b mediated by catalyst 20 (X=I) was performed in the absence of MS 4 A a remarkable reversal of enantioselectivity was observed as the opposite enantiomer of ench-21 was obtained (Table 6.1, entries 1 and 2). This had not been observed for enantioselective catalytic reactions before and the role of molecular sieves cannot simply be ascribed to the removal of water by the MS, since the application of MS 4 A that were presaturated with water, also induced the reversal of enantioselectivity (Table 6.1, entries 3 and 4). Recently, Desimoni et al. also found that in addition to the presence of MS in the MgX2-Ph-BOX-catalyzed 1,3-dipolar addition shown in Scheme 6.17, the counter-ion for the magnesium catalyst also strongly affect the absolute stereoselectivity of the reac-... [Pg.224]


See other pages where 1.3- Dipolar cycloaddition reactions reaction is mentioned: [Pg.55]    [Pg.55]    [Pg.143]    [Pg.557]    [Pg.557]    [Pg.723]    [Pg.872]    [Pg.873]    [Pg.874]    [Pg.269]    [Pg.279]    [Pg.252]    [Pg.145]    [Pg.210]    [Pg.211]    [Pg.212]    [Pg.213]    [Pg.214]    [Pg.216]    [Pg.218]    [Pg.224]    [Pg.224]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



1.3- Dipolar reactions

Cycloaddition reactions 1,3-dipolar

Cycloadditions 1,3-dipolar reactions

© 2024 chempedia.info