Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diphosphine ligands hydrogenation

With the use of water-soluble chiral diphosphine ligands, hydrogenation of pro-chiral olefins can provide optically active compounds. Asymmetric hydrogenation in aqueous media or in an aqueous-organic two-phase system with rhodi-... [Pg.44]

Monsanto s commercial route to the Parkinson s drug, L-DOPA (3,4-dihydroxyphenylalanine), utilizes an Erlenmeyer azlactone prepared from vanillin. The pioneering research in catalytic asymmetric hydrogenation by William Knowles as exemplified by his reduction of 24 to 25 in 95% ee with the DiPAMP diphosphine ligand was recognized with a Nobel Prize in Chemistry in 2001. ... [Pg.232]

Scheme 8.34 Hydrogenation of a Schiff base with tetrasulfonated diphosphine ligand. Scheme 8.34 Hydrogenation of a Schiff base with tetrasulfonated diphosphine ligand.
Manufacture of rhodium precatalysts for asymmetric hydrogenation. Established literature methods used to make the Rh-DuPhos complexes consisted of converting (1,5-cyclooctadiene) acetylacetonato Rh(l) into the sparingly soluble bis(l,5-cyclooctadiene) Rh(l) tetrafluoroborate complex which then reacts with the diphosphine ligand to provide the precatalyst complex in solution. Addition of an anti-solvent results in precipitation of the desired product. Although this method worked well with a variety of diphosphines, yields were modest and more importantly the product form was variable. The different physical forms performed equally as well in hydrogenation reactions but had different shelf-life and air stability. [Pg.71]

An especially important case is the enantioselective hydrogenation of a-amidoacrylic acids, which leads to a-aminoacids.29 A particularly detailed study has been carried out on the mechanism of reduction of methyl Z-a-acetamidocinnamate by a rhodium catalyst with a chiral diphosphine ligand DIPAMP.30 It has been concluded that the reactant can bind reversibly to the catalyst to give either of two complexes. Addition of hydrogen at rhodium then leads to a reactive rhodium hydride and eventually to product. Interestingly, the addition of hydrogen occurs most rapidly in the minor isomeric complex, and the enantioselectivity is due to this kinetic preference. [Pg.380]

The characterization and crystal structure of the dimer [Pt2( -dppm)3] (dppm = bis(diphenyl-phosphino)methane), first reported as a deep red complex in 1978, was described by Manojlovic-Muir et al. in 1986.11 The structure, the first of its type, is made up of two parallel and almost eclipsed trigonal-planar platinum moieties bridged by three diphosphine ligands. The Pf Pt separation is 3.0225(3) A, too long to be considered a bond.11 [Pt2(//-dppm)3] catalyzes the hydrogenation/reduction of carbon dioxide with dimethylamine to give dimethylformamide12 (Equation (1)) and the reverse reaction.13... [Pg.675]

A chiral diphosphine ligand was bound to silica via carbamate links and was used for enantioselective hydrogenation.178 The activity of the neutral catalyst decreased when the loading was increased. It clearly indicates the formation of catalytically inactive chlorine-bridged dimers. At the same time, the cationic diphosphine-Rh catalysts had no tendency to interact with each other (site isolation).179 New cross-linked chiral transition-metal-complexing polymers were used for the chemo- and enantioselective epoxidation of olefins.180... [Pg.261]

In contrast, synthesis of 3,4-diphosphorylthiophenes requires more elaboration because of low reactivity of 3,4-positions of thiophene and unavailability of 3,4-dihalo or dimetallated thiophenes. Minami et al. synthesized 3,4-diphosphoryl thiophenes 16 as shown in Scheme 24 [46], Bis(phosphoryl)butadiene 17 was synthesized from 2-butyne-l,4-diol. Double addition of sodium sulfide to 17 gave tetrahydrothiophene 18. Oxidation of 18 to the corresponding sulfoxide 19 followed by dehydration gave dihydrothiophene 20. Final oxidation of 20 afforded 3,4-diphosphorylthiophene 16. 3,4-Diphosphorylthiophene derivative 21 was also synthesized by Pd catalyzed phosphorylation of 2,5-disubstituted-3,4-dihalothiophene and converted to diphosphine ligand for Rh catalysts for asymmetric hydrogenation (Scheme 25) [47],... [Pg.26]

In this reaction, a rhodium atom complexed to a chiral diphosphine ligand ( P—P ) catalyzes the hydrogenation of a prochiral enamide, with essentially complete enan-tioselectivity and limiting kinetic rates exceeding hundreds of catalyst turnovers per second. While precious metals such as Ru, Rh, and Ir are notably effective for catalysis of hydrogenation reactions, many other transition-metal and lanthanide complexes exhibit similar potency. [Pg.488]

Norton and coworkers found that catalytic enantioselective hydrogenation of the C=N bond of iminium cations can be accomplished using a series of Ru complexes with chiral diphosphine ligands such as Chiraphos and Norphos [68], Even tetra-alkyl-substituted iminium cations can be hydrogenated by this method. These reactions were carried out with 2 mol.% Ru catalyst and 3.4—3.8 bar H2 at room temperature in CH2C12 solvent (Eq. (39)). [Pg.185]

Scheme 8.4 Mechanism for the hydrogenation of alkenes catalyzed by ruthenium clusters stabilized by edge-bridging diphosphine ligands (CO ligands omitted for clarity). Scheme 8.4 Mechanism for the hydrogenation of alkenes catalyzed by ruthenium clusters stabilized by edge-bridging diphosphine ligands (CO ligands omitted for clarity).
The sense of diastereoselectivity in the dynamic kinetic resolution of 2-substi-tuted / -keto esters depends on the structure of the keto ester. The ruthenium catalyst with atropisomeric diphosphine ligands (binap, MeO-biphep, synphos, etc.) induced syn-products in high diastereomeric and enantiomeric selectivity in the dynamic kinetic resolution of / -keto esters with an a-amido or carbamate moiety (Table 21.21) [119-121, 123, 125-127]. In contrast to the above examples of a-amido-/ -keto esters, the TsOH or HC1 salt of /l-keto esters with an a-amino unit were hydrogenated with excellent cwti-selectivity using ruthenium-atropiso-... [Pg.698]

The use of phosphite-phosphoramidite ligands 168 a and b provided up to 98% ee in the hydrogenation of methyl (Z)-N-2-acelylarrii noci rinamale, but the activities were rather low when compared to 167 or to the corresponding diphosphine ligand [126]. [Pg.983]

Fig. 34.14 Schematic catalytic cycle postulated for the Ir diphosphine-catalyzed hydrogenation of N-aryl imines. For clarity, the halide ligands are not shown. Fig. 34.14 Schematic catalytic cycle postulated for the Ir diphosphine-catalyzed hydrogenation of N-aryl imines. For clarity, the halide ligands are not shown.
Rhodium diphosphine catalysts can be easily prepared from [Rh(nbd)Cl]2 and a chiral diphosphine, and are suitable for the hydrogenation of imines and N-acyl hydrazones. However, with most imine substrates they exhibit lower activities than the analogous Ir catalysts. The most selective diphosphine ligand is bdppsuif, which is not easily available. Rh-duphos is very selective for the hydrogenation of N-acyl hydrazones and with TOFs up to 1000 h-1 would be active enough for a technical application. Rh-josiphos complexes are the catalysts of choice for the hydrogenation of phosphinyl imines. Recently developed (penta-methylcyclopentyl) Rh-tosylated diamine or amino alcohol complexes are active for the transfer hydrogenation for a variety of C = N functions, and can be an attractive alternative for specific applications. [Pg.1211]

Salzer et al. prepared a set of planar-chiral diphosphine ligands based on the arene chromium tricarbonyl backbone (Fig. 36.3) [21]. The straightforward four-step synthetic route allowed the preparation of 20 ligands of this family. These ligands were tested in Ru- and Rh-catalyzed enantioselective hydrogenation of various substrates, including the standard C=C substrates (dimethyl itaconate, methyl-2-acetamidocinnamate, methyl-2-acetamidoacrylate) as well as MEA-imine (l-(methoxymethyl)ethylidene-methylethylaniline) and ethyl pyruvate. Moderate conversions and ee-values were obtained. [Pg.1254]

Figure 6-3. Mechanism for the hydrogenation of a prochiral substrate methyl acet-amidocinnamate (MAC) with a catalyst containing a chiral chelating diphosphine ligand... Figure 6-3. Mechanism for the hydrogenation of a prochiral substrate methyl acet-amidocinnamate (MAC) with a catalyst containing a chiral chelating diphosphine ligand...
In 1971, Kagan published his ground-breaking research in the field.141 He demonstrated that high enantioselectivities could be obtained in the Rh-catalyzed hydrogenation of functionalized olefins, such as the dehydroamino acid derivatives 3 and 4, using a novel diphosphine ligand which he called DIOP 2 (Scheme 2). [Pg.90]

Recently Togni et al. [19] focussed on the preparation of asymmetric dendrimer catalysts derived from ferrocenyl diphosphine ligands anchored to dendritic backbones constructed from benzene-1,3,5-tricarboxylic acid trichloride and adamantane-l,3,5,7-tetracarboxylic acid tetrachloride (e.g. 11, Scheme 11). In situ catalyst preparation by treatment of the dendritic ligands with [Rh(COD)2]BF4 afforded the cationic Rh-dendrimer, which was then used as a homogeneous catalyst in the hydrogenation reaction of, for example, dimethyl itaconate in MeOH. In all cases the measured enantioselectivity (98.0-98.7%) was nearly the same as observed for the ferrocenyl diphosphine (Josiphos) model compound (see Scheme 11). [Pg.496]

Although chelating aryl diphosphine ligands are effective for hydrogenating dehydroamino acids with high stereoselectivity, minor changes in the composition of the substrate can drastically lower the enantiomeric excess. The best results are obtained for the following structures ... [Pg.111]


See other pages where Diphosphine ligands hydrogenation is mentioned: [Pg.47]    [Pg.35]    [Pg.176]    [Pg.247]    [Pg.268]    [Pg.185]    [Pg.227]    [Pg.76]    [Pg.84]    [Pg.129]    [Pg.116]    [Pg.116]    [Pg.120]    [Pg.54]    [Pg.14]    [Pg.68]    [Pg.204]    [Pg.631]    [Pg.672]    [Pg.681]    [Pg.684]    [Pg.698]    [Pg.783]    [Pg.863]    [Pg.1105]    [Pg.1111]    [Pg.1240]    [Pg.359]    [Pg.497]    [Pg.117]    [Pg.109]   
See also in sourсe #XX -- [ Pg.910 , Pg.911 ]




SEARCH



Diphosphine

Diphosphine ligands

Diphosphines

© 2024 chempedia.info