Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dioxolan chiral

The asymmetric addition of organolithium reagents to arylox azolines has been used to construct highly complex polycyclic terpene structures found in natural products. For example, the asymmetric addition of vinyllithium to chiral naphthyloxazoline 3 followed by treatment of the resulting anionic intermediate with iodoethyl dioxolane 61... [Pg.244]

Several titanium(IV) complexes are efficient and reliable Lewis acid catalysts and they have been applied to numerous reactions, especially in combination with the so-called TADDOL (a, a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) (22) ligands [53-55]. In the first study on normal electron-demand 1,3-dipolar cycloaddition reactions between nitrones and alkenes, which appeared in 1994, the catalytic reaction of a series of chiral TiCl2-TADDOLates on the reaction of nitrones 1 with al-kenoyloxazolidinones 19 was developed (Scheme 6.18) [56]. These substrates have turned out be the model system of choice for most studies on metal-catalyzed normal electron-demand 1,3-dipolar cycloaddition reactions of nitrones as it will appear from this chapter. When 10 mol% of the catalyst 23a was applied in the reaction depicted in Scheme 6.18 the reaction proceeded to give a yield of up to 94% ee after 20 h. The reaction led primarily to exo-21 and in the best case an endo/ exo ratio of 10 90 was obtained. The chiral information of the catalyst was transferred with a fair efficiency to the substrates as up to 60% ee of one of the isomers of exo3 was obtained [56]. [Pg.226]

A detailed spectroscopic and theoretical study of the conformation of dioxolanes 1 has appeared <96T8275>, and a theoretical study has shown that the anomeric effect explains the non-planarity of 1,3-dioxole <96JA9850>. The tetraalkynyldioxolanone 2 has been prepared and its structure and reactivity studied <96HCA634>. Both enantiomers of the chiral glycolic acid equivalent 3 can be prepared from D-mannitol <96HCA1696>, and lipase-mediated kinetic... [Pg.192]

This chapter deals with single crystal x-ray diffraction as a tool to study marine natural product structures. A brief introduction to the technique is given, and the structure determination of PbTX-1 (brevetoxin A), the most potent of the neurotoxic shellfish poisons produced by Ptychodiscus brevis in the Gulf of Mexico, is presented as an example. The absolute configuration of the brevetoxins is established via the single crystal x-ray diffraction analysis of a chiral 1,2-dioxolane derivative of PbTX-2 (brevetoxin B). [Pg.144]

The alkenyl oxonium ion dienophiles generated from dioxolanes can be made diastereoselective by use of chiral diols. For example, acetals derived from anti-pentane-2,4-diol react under the influence of TiCl4/Ti(/-OPr)4 with stereoselectivity ranging from 3 1 to 15 1. [Pg.504]

The a,a,a,a-tetraaryl-l,3-dioxolane-4,5-dimethanol (TADDOL) chiral ligands have also been the basis of enantioselective catalysis of the D-A reaction. In a study using 2-methoxy-6-methylquinone as the dienophile, evidence was found that the chloride-ligated form of the catalysts was more active than the dimeric oxy-bridged form.117... [Pg.512]

As in intermolecular reactions, enantioselectivity can be achieved in IMDA additions by use of chiral components. For example, the dioxolane ring in 5 and 6 results in TS structures that lead to enantioselective reactions.130 The chirality in the dioxolane ring is reflected in the respective TSs, both of which have an endo orientation of the carbonyl group. [Pg.524]

Mejorado investigated the asymmetric addition of various organometallic nucleophiles using method A, but the reaction could not be catalyzed. The intermediates proved to be far too reactive. However, he established that the addition of a stoichiometric amount of a preformed chiral complex [an admixture of Taddol (r/om-a, -(dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenyl methanol)) and EtMgBr] to 5 affords some enantiomeric excess in the resulting phenol product 6 (Fig. 4.12).13... [Pg.95]

In our group, dendrimers carrying the catalytically active part either on the periphery or in the core were investigated. In both cases a,a,a, a -fetraaryl-l,3-dioxolane-4,5-dimethanoZs (TADDOLs) have been employed as ligands in chiral... [Pg.166]

A patent procedure for formation of compounds 19 from simple tartaric acid derivatives has appeared <06USP047129> and various new routes to chiral dioxolanones include synthesis of dioxolan-2-ones either by transition metal-mediated asymmetric synthesis <06T1864> or enzyme-mediated kinetic resolution <06H(68)1329> and a new synthesis of the chiral dioxolan-4-ones 21 from lactic or mandelic acid involving initial formation of intermediates 20 with trimethyl orthoformate in cyclohexane followed by reaction with pivalaldehyde <06S3915>. [Pg.278]

Addition of 2-ethylphenyllithium to dioxolane 25 in the presence of the alkaloid sparteine gives the chiral product 26 in up to 80% e.e. . [Pg.207]

Various chiral dipolarophiles have been used in the asymmetric synthesis of hexahydro-isoxazolo[2,3- ]pyridines. Examples include // / -2-methylcnc-l, 3-dithiolane 1,3-dioxide 83 <1998JOC3481>, chiral vinyl sulfoxide 85 <1997TA109>, or chiral dioxolanes <2001TA1747> (Scheme 27). [Pg.432]

Asymmetric Wittig rearrangements.7 High 1,2-asymmetric induction obtains in the [2,3]Wittig rearrangement of the chiral dioxolanes 1 and 3. In each case the... [Pg.66]

Chiral glycolates. The chiral dioxolanes 1 and 2 are prepared by reaction of 8-phenylmenthone with a protected derivative, (CH3)3SiOCH2COOSi(CH3)3, of glycolic acid catalyzed by trimethylsilyl triflate. They are obtained in about a 1 1 ratio and are separable by chromatography. Alkylation of the enolates of 1 and 2 proceeds with marked diastereofacial selectivity. After separation of the major... [Pg.259]

Cyclic ketene acetals, which have utility as co-polymers with functional groups capable of cross-linking, etc., have been prepared by the elimination of HX from 2-halomethyl-l,3-dioxolanes. Milder conditions are used under phase-transfer conditions, compared with traditional procedures, which require a strong base and high temperatures. Solid liquid elimination reactions frequently use potassium f-butoxide [27], but acceptable yields have been achieved with potassium hydroxide and without loss of any chiral centres. The added dimension of sonication reduces reaction times and improves the yields [28, 29]. Microwave irradiation has also been used in the synthesis of methyleneacetals and dithioacetals [30] and yields are superior to those obtained with sonofication. [Pg.394]

A more recent synthesis of 197 [365] is shown in Fig. 9. Enders introduced the stereogenic centre of (S)-lactic acid into the crucial position 10 in 197. The vinylsulfone B, readily available from lactic acid, was transformed into the planar chiral phenylsulfonyl-substituted (q3-allyl)tetracarbonyliron(+l) tetra-fluoroborate C showing (IR,2S,3 )-configuration. Addition of allyltrimethyl silane yielded the vinyl sulfone D which was hydrogenated to E. Alkylation with the dioxolane-derivative of l-bromoheptan-6-one (readily available from 6-bro-mohexanoic acid) afforded F. Finally, reductive removal of the sulfonyl group and deprotection of the carbonyl group furnished 197. A similar approach was used for the synthesis of 198 [366]. [Pg.150]

The use of TADDOL-based ligands offers an important alternative for copper-catalyzed asymmetric 1,4-additions. TADDOLs (a, a, a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol compounds), introduced by Seebach, are among the most successful currently known ligands in asymmetric catalysis. Seebach also developed the first copper-catalyzed 1,4-addition of a Grignard reagent using a TADDOL derivative as a chiral ligand (see Scheme 7.2) [17]. We have reported TADDOL-based... [Pg.234]

Another chiral ligand which plays an increasingly important role in asymmetric catalysis is TADDOL (a,a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) [63]. Various attempts have been made to immobilize this chiral system to various solid sup-... [Pg.208]

In the catalytic system shown in Scheme 9, a hydrogen bond between one hydroxy function of the diol catalyst and the carbonyl group of the substrate is regarded as the driving force of catalysis. Here, the spatial orientation of the bulky a-1-naphthyl substituents of the TADDOL (a,a,a, a -tetraaryl-l,3-dioxolan-4,5-dimethanol) scaffold generates the chiral environment controlling the enantioselectivity of the reaction. [Pg.23]


See other pages where Dioxolan chiral is mentioned: [Pg.776]    [Pg.623]    [Pg.776]    [Pg.623]    [Pg.323]    [Pg.92]    [Pg.36]    [Pg.108]    [Pg.510]    [Pg.192]    [Pg.193]    [Pg.193]    [Pg.194]    [Pg.69]    [Pg.137]    [Pg.163]    [Pg.108]    [Pg.256]    [Pg.279]    [Pg.105]    [Pg.206]    [Pg.207]    [Pg.300]    [Pg.320]    [Pg.442]    [Pg.327]    [Pg.502]    [Pg.298]    [Pg.95]    [Pg.822]   
See also in sourсe #XX -- [ Pg.39 , Pg.42 , Pg.43 , Pg.43 ]




SEARCH



© 2024 chempedia.info