Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimerization reactions aldehydes/ketones

With l,3-dimethyl-2,l-benzisoxazolium salts, however, considerable reactivity has been reported. Condensation occurs readily with aldehydes, ketones, orthoesters and diazonium salts to yield styryl, cyanine and azo compounds, respectively (78JOC1233). In the presence of triethylamine, dimerization was observed, and the reactions of the cation were considered to involve the intermediacy of the anhydro base (77JOC3929). [Pg.51]

On the other hand y-pyrones or 1,3-diketones could be obtained from the reactions of ketone derived enamines with diketene 423-426). The addition of dimethyl ketene dimer to aldehyde or ketone derived enamines produced cyclohexanediones 425,426). [Pg.395]

The most characteristic and useful reaction is the dimerization with incorporation of certain nucleophiles. It is well-known that simple olefins coordinated by Pd2+ compounds undergo nucleophilic substitutions [Eq. (9)] or addition reactions [Eq. (10)] (16, 17). Water, alcohols, and carboxylic acids are typical nucleophiles which attack olefins to form aldehydes, ketones, vinyl ethers, and vinyl esters. [Pg.145]

Another important reaction in synthetic chemistry leading to C-C bond formation is the Michael addition. The reaction typically involves a conjugate or nucleophilic 1,4-addition of carbanions to a,/l-unsaturated aldehydes, ketones, esters, nitriles, or sulfones 157) (Scheme 21). A base is used to form the carbanion by abstracting a proton from an activated methylene precursor (donor), which attacks the alkene (acceptor). Strong bases are usually used in this reaction, leading to the formation of byproducts arising from side reactions such as condensations, dimerizations, or rearrangements. [Pg.263]

The prototypical aldol addition reaction is the acid- or base-catalyzed dimerization of a ketone or aldehyde.1 Under certain conditions, the reaction product may undergo... [Pg.57]

You ve seen examples of pinacol and McMurry reactions of ketones and aldehydes. What about esters You would expect the ketyl radical anion to form from an ester in the same way, and then to undergo radical dimerization, and this is indeed what happens. [Pg.1032]

Similar to the benzynezirconocene, cyclohexyne, cyclopen-tyne, alkyne, alkene, cycloaUcene zirconocenes, and related species insert various substrates such as alkynes, alkenes, aldehydes, ketones, nitriles or phosphaalkynes. They lead in general five-membered zirconacycles, which can be converted by transmetalation or exchange reactions into fused-ring aromatic or heterocyclic compounds. The extension of this chemistry to heterobenzyne complexes can be realized, for instance, in phosphinine compounds. Consequently, under mild conditions, ) -phosphabenzyne-zirconocene complexes are formed and can be isolated either as PMes adducts or as dimers when the elimination reaction is carried out without added phosphane (Scheme 28). [Pg.5311]

Simple a,3-unsaturated aldehydes, ketones, and esters (R = C02Me H > alkyl, aryl OR equation l)i, 60 preferentially participate in LUMOdiene-controlled Diels-Alder reactions with electron-rich, strained, and selected simple alkene and alkyne dienophiles, - although the thermal reaction conditions required are relatively harsh (150-250 C) and the reactions are characterized by the competitive dimerization and polymerization of the 1-oxa-1,3-butadiene. Typical dienophiles have included enol ethers, thioenol ethers, alkynyl ethers, ketene acetals, enamines, ynamines, ketene aminals, and selected simple alkenes representative examples are detailed in Table 2. - The most extensively studied reaction in the series is the [4 + 2] cycloaddition reaction of a,3-unsaturated ketones with enol ethers and E)esimoni,... [Pg.453]

Compounds whose radical anions give follow-up reactions can be reduced, and the reaction medium (aqueous or non-aqueous) eventually governs the nature of the final products. A number of organic substrates such as aldehydes, ketones and alkynes have been reduced in this way. It is also possible to reduce substrates which have a potential much more negative than its standard redox potential. For instance, nitrate, nitrite and carbon dioxide are reduced [2]. In the latter case [157], the overpotential reaches 0.6 V and the reaction is still rapid because the rate of the follow-up reaction, i.e. the dimerization of C02 , is extremely high (it= 10 M- s- ) [158]. [Pg.1399]

Among the most significant developments in the field of catalysis in recent years have been the discovery and elucidation of various new, and often novel, catalytic reactions of transition metal ions and coordination compounds 13, 34). Examples of such reactions are the hydrogenation of olefins catalyzed by complexes of ruthenium (36), rhodium (61), cobalt (52), platinum (3, 26, 81), and other metals the hydroformylation of olefins catalyzed by complexes of cobalt or rhodium (Oxo process) (6, 46, 62) the dimerization of ethylene (i, 23) and polymerization of dienes (15, 64, 65) catalyzed by complexes of rhodium double-bond migration in olefins catalyzed by complexes of rhodium (24,42), palladium (42), cobalt (67), platinum (3, 5, 26, 81), and other metals (27) the oxidation of olefins to aldehydes, ketones, and vinyl esters, catalyzed by palladium chloride (Wacker process) (47, 48, 49,... [Pg.1]

Dicyclopentadiene is a feedstock for both the fragrance and polymer industries. It forms spontaneously from cyclopentadiene by a Diels-Alder reaction, and a retro-Diels-Alder reaction can be used to regenerate cyclopentadiene from it. A number of minor fragrance ingredients are produced by Diels-Alder reaction of the monomer with a variety of activated olefins in which the activating group X, is usually an aldehyde, ketone, ester or nitrile. However, the main fragrance uses stem from the dimer. [Pg.122]

Mixed aldol reactions between ketones and aldehydes are frequently successful because one of the competing side reactions, self-reaction of the ketone, is endothermic. Most commonly, these mixed aldol reactions are carried out under conditions that lead to the a,p-unsaturated ketone pr uct. The principal side reaction is usually aldehyde dimerization. [Pg.142]

Simple a,/3-unsaturated aldehydes, ketones, and esters participate preferentially in inverse electron demand (LUMOdlcne controlled) Diels-Alder reactions with electron-rich, strained, or simple olefinic and acetylenic dienophiles.3 5 The thermal reaction conditions for promoting the [4 + 2] cycloadditions of simple 1-oxabutadienes (R = H > alkyl, aryl > OR), cf. Eq. (1), are relatively harsh (150-250°C), and the reactions are characterized by competitive a,/3-unsaturated carbonyl compound dimerization or polymerization. Usual experimental techniques employed to compensate for poor conversions include the addition of radical inhibitors to the reaction mixture and the use of excess 1-oxabutadiene for promoting the [4 + 2] cycloaddition. Recent efforts have demonstrated that Lewis acid catalysis and pressure-promoted reaction conditions28-30 may be used successfully to conduct the [4 + 2] cycloaddition under mild thermal conditions (25-100°C). [Pg.272]


See other pages where Dimerization reactions aldehydes/ketones is mentioned: [Pg.397]    [Pg.300]    [Pg.197]    [Pg.236]    [Pg.414]    [Pg.197]    [Pg.39]    [Pg.444]    [Pg.356]    [Pg.127]    [Pg.144]    [Pg.312]    [Pg.175]    [Pg.241]    [Pg.300]    [Pg.141]    [Pg.830]    [Pg.407]    [Pg.595]    [Pg.142]    [Pg.248]    [Pg.312]    [Pg.300]    [Pg.139]    [Pg.445]   
See also in sourсe #XX -- [ Pg.1620 ]




SEARCH



Dimerization reactions

Dimerization reactions ketones

© 2024 chempedia.info