Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer diffusion-controlled

Rhine, W., et ai, A new approach to achieve zero-order release kinetics from diffusion-controlled polymer matrix systems, in R.W. Baker, Controlled Release of Bioactive Materials. New York Academic Press, 1980, pp. 177-187. [Pg.276]

Tongwen, X., Binghn, H., 1998. Mechanism of sustained drug release in diffusion-controlled polymer matrix-apphcation of percolation theory. International Journal of Pharmaceutics 170, 139-149. [Pg.153]

Most radicals are transient species. They (e.%. 1-10) decay by self-reaction with rates at or close to the diffusion-controlled limit (Section 1.4). This situation also pertains in conventional radical polymerization. Certain radicals, however, have thermodynamic stability, kinetic stability (persistence) or both that is conferred by appropriate substitution. Some well-known examples of stable radicals are diphenylpicrylhydrazyl (DPPH), nitroxides such as 2,2,6,6-tetramethylpiperidin-A -oxyl (TEMPO), triphenylniethyl radical (13) and galvinoxyl (14). Some examples of carbon-centered radicals which are persistent but which do not have intrinsic thermodynamic stability are shown in Section 1.4.3.2. These radicals (DPPH, TEMPO, 13, 14) are comparatively stable in isolation as solids or in solution and either do not react or react very slowly with compounds usually thought of as substrates for radical reactions. They may, nonetheless, react with less stable radicals at close to diffusion controlled rates. In polymer synthesis these species find use as inhibitors (to stabilize monomers against polymerization or to quench radical reactions - Section 5,3.1) and as reversible termination agents (in living radical polymerization - Section 9.3). [Pg.14]

In the classical diffusion control model it is assumed that propagation occurs according to the terminal model (Scheme 7.1). The rate of the termination step is limited only by the rates of diffusion of the polymer chains. This rate may be dependent on the overall polymer chain composition. However, it does not depend solely on the chain end.166,16... [Pg.368]

Prior to the development of NMP, nitroxides were well known as inhibitors of polymerization (Section 5.3.1). They and various derivatives were (and still are) widely used in polymer stabilization. Both applications are based on the property of nitroxides to efficiently scavenge carbon-centered radicals by combining with them at near diffusion-controlled rates to form alkoxyamines. This property also saw nitroxides exploited as trapping agents to define initiation mechanisms (Section 3.5.2.4). [Pg.471]

Exchange of counter-ions (and solvent) between the polymer and the solution in order to keep the electroneutrality in the film. In a compacted or stressed film, these kinetics are under conformational relaxation control while the structure relaxes. After the initial relaxation, the polymer swells, and conformational changes continue under counter-ion diffusion control in the gel film from the solution. [Pg.374]

After polarization to more anodic potentials than E the subsequent polymeric oxidation is not yet controlled by the conformational relaxa-tion-nucleation, and a uniform and flat oxidation front, under diffusion control, advances from the polymer/solution interface to the polymer/metal interface by polarization at potentials more anodic than o-A polarization to any more cathodic potential than Es promotes a closing and compaction of the polymeric structure in such a magnitude that extra energy is now required to open the structure (AHe is the energy needed to relax 1 mol of segments), before the oxidation can be completed by penetration of counter-ions from the solution the electrochemical reaction starts under conformational relaxation control. So AHC is the energy required to compact 1 mol of the polymeric structure by cathodic polarization. Taking... [Pg.379]

When a polymer relaxes at a constant anodic potential, the relaxation and partial opening of the polymeric structure involve a partial oxidation of the polymer. Once relaxed, the oxidation and swelling of the relaxed polymer goes on until total oxidation is reached this is controlled by the diffusion of the counter-ions through the film from the solution. This hypothesis seems to be confirmed by the current decay after the chronoam-perometric maximum is reached. We will focus now on the diffusion control. [Pg.389]

An infinitesimal fraction of the polymer will be considered, consisting of all the segments that are relaxed at the same time (f). As result of the flow given by Eq. (32), the increment of charge stored under diffusion control [dQd(t) in this infinitesimal portion of the polymer at a given time t>f, will be given by... [Pg.390]

Equations (37) and (38), along with Eqs. (29) and (30), define the electrochemical oxidation process of a conducting polymer film controlled by conformational relaxation and diffusion processes in the polymeric structure. It must be remarked that if the initial potential is more anodic than Es, then the term depending on the cathodic overpotential vanishes and the oxidation process becomes only diffusion controlled. So the most usual oxidation processes studied in conducting polymers, which are controlled by diffusion of counter-ions in the polymer, can be considered as a particular case of a more general model of oxidation under conformational relaxation control. The addition of relaxation and diffusion components provides a complete description of the shapes of chronocoulograms and chronoamperograms in any experimental condition ... [Pg.391]

These equations describe the full oxidation of a conducting polymer Submitted to a potential step under electrochemically stimulated confer-mational relaxation control as a function of electrochemical and structural variables. The initial term of /(f) includes the evolution of the current consumed to relax the structure. The second term indicates an interdependence between counter-ion diffusion and conformational changes, which are responsible for the overall oxidation and swelling of the polymer under diffusion control. [Pg.392]

If the film is nonconductive, the ion must diffuse to the electrode surface before it can be oxidized or reduced, or electrons must diffuse (hop) through the film by self-exchange, as in regular ionomer-modified electrodes.9 Cyclic voltammograms have the characteristic shape for diffusion control, and peak currents are proportional to the square root of the scan speed, as seen for species in solution. This is illustrated in Fig. 21 (A) for [Fe(CN)6]3 /4 in polypyrrole with a pyridinium substituent at the 1-position.243 This N-substituted polypyrrole does not become conductive until potentials significantly above the formal potential of the [Fe(CN)6]3"/4 couple. In contrast, a similar polymer with a pyridinium substituent at the 3-position is conductive at this potential. The polymer can therefore mediate electron transport to and from the immobilized ions, and their voltammetry becomes characteristic of thin-layer electrochemistry [Fig. 21(B)], with sharp symmetrical peaks that increase linearly with increasing scan speed. [Pg.589]

Color mimicking by means of electrochemistry, 361 Completion of oxidation for polymers and diffusion control, 414 Concentration effects of microwave energy, 442... [Pg.628]

Polymer formation icont.) diffusion components and, 421 diffusion control of oxidation in, 389 electrochemical responses, 400 influence of concentration, 397 and kinetic equations, 381 nucleation and, 379 oxidized area, 387... [Pg.638]

It is appropriate to differentiate between polymerizations occuring at temperatures above and below the glass transition point(Tg) of the polymer being produced. For polymerizations below Tg the diffusion coefficients of even small monomer molecules can fall appreciably and as a consequence even relatively slow reactions involving monomer molecules can become diffusion controlled complicating the mechanism of polymerization even further. For polymerizations above Tg one can reasonably assume that reactions involving small molecules are not diffusion controlled, except perhaps for extremely fast reactions such as those involving termination of small radicals. [Pg.43]

In order to estimate the dependence of the termination rate constant on conversion, molecular weight and temperature, the following is assumed k- becomes diffusion controlled when the diffusion coefficient for a polymer radical Dp becomes less than or equal to a critical diffusion coefficient D ... [Pg.51]

The remaining problem in the model development is to estimate the decrease in kp as a function of conversion. As the reaction proceeds beyond the point of chain entanglement, a critical conversion is reached where the propagation reaction becomes diffusion controlled and kp begins to fall with further increase in polymer concentration. At the critical conversion, one may write... [Pg.53]

As the polymerization reaction proceeds, scosity of the system increases, retarding the translational and/ or segmental diffusion of propagating polymer radicals. Bimolecular termination reactions subsequently become diffusion controlled. A reduction in termination results in an increase in free radical population, thus providing more sites for monomer incorporation. The gel effect is assumed not to affect the propagation rate constant since a macroradical can continue to react with the smaller, more mobile monomer molecule. Thus, an increase in the overall rate of polymerization and average degree of polymerization results. [Pg.376]

First, in composites with high fiber concentrations, there is little matrix in the system that is not near a fiber surface. Inasmuch as polymerization processes are influenced by the diffusion of free radicals from initiators and from reactive sites, and because free radicals can be deactivated when they are intercepted at solid boundaries, the high interfacial area of a prepolymerized composite represents a radically different environment from a conventional bulk polymerization reactor, where solid boundaries are few and very distant from the regions in which most of the polymerization takes place. The polymer molecular weight distribution and cross-link density produced under such diffusion-controlled conditions will differ appreciably from those in bulk polymerizations. [Pg.85]

For purposes of simulation and illustration we have chosen a batch reactor, solution polymerization of methylmethacrylate (MMA). Kinetic data were taken from Schmidt and Ray (1981) and thermodynamic data from Bywater (1955). We do not here consider the influence of diffusion control on the termination or other rate processes because such effects may be small when in a solution which is siifHciently dilute or when the polymer is of low molecular weight. [Pg.323]

The high permeability of PCL and its copolymers coupled with a controllable induction period prior to polymer weight loss (vide infra) lends itself to the development of delivery devices that are based on diffusion-controlled delivery of the drug during the induction period prior to weight loss. The subsequent biodegradation of the polymer serves the purpose of eliminating the need to recover the spent device. [Pg.86]


See other pages where Polymer diffusion-controlled is mentioned: [Pg.12]    [Pg.250]    [Pg.315]    [Pg.250]    [Pg.251]    [Pg.1858]    [Pg.5]    [Pg.5]    [Pg.12]    [Pg.250]    [Pg.315]    [Pg.250]    [Pg.251]    [Pg.1858]    [Pg.5]    [Pg.5]    [Pg.329]    [Pg.24]    [Pg.231]    [Pg.334]    [Pg.138]    [Pg.228]    [Pg.360]    [Pg.116]    [Pg.235]    [Pg.72]    [Pg.331]    [Pg.409]    [Pg.428]    [Pg.636]    [Pg.44]    [Pg.49]    [Pg.67]    [Pg.114]    [Pg.130]   


SEARCH



Diffusion control

Diffusion controlled

Diffusion controlled homogeneous polymer reactions

Diffusion controlled reactions in polymer degradation

Diffusion polymers

Diffusion-controlled polymer reactions

Diffusion-controlled polymer release

Diffusion-controlled polymer termination reactions

Polymer crystallization diffusion-controlled mechanism

Polymer diffusivity

Polymer matrix diffusion-controlled

Polymer matrix diffusion-controlled drug

Polymer matrix diffusion-controlled drug delivery systems

Polymer matrix system diffusion-controlled release rate

© 2024 chempedia.info