Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienones cycloaddition

The addition of maleic anhydride can occur by excitation of either dienone or the anhydride. It is tempting to ascribe the 4,5-adduct (264) to a reaction between the excited dienone (260) and unexcited maleic anhydride by analogy with the observed major products of ethylene addition [cf. (261), (262)]. The 6,7-adducts (265) and (266) would then imply that these cycloadditions proceed by way of excited maleic anhydride which adds preferentially to the more electron-rich y,5-double bond of the groundstate dienone. [Pg.347]

Interestingly, in the inverse-electron-demand Diels-Alder reactions of oxepin with various enophiles such as cyclopentadienones and tetrazines the oxepin form, rather than the benzene oxide, undergoes the cycloaddition.234 236 Usually, the central C-C double bond acts as dienophile. Oxepin reacts with 2,5-dimethyl-3,4-diphenylcyclopenta-2,4-dienone to give the cycloadduct 6 across the 4,5-C-C double bond of the heterocycle.234 The adduct resists thermal carbon monoxide elimination but undergoes cycloreversion to oxepin and the cyclopenta-dienone.234... [Pg.52]

By analogy with the formation of3//-azepines by cycloaddition of 2//-azirines withcyclopenta-dienones, l,3-diphenyl-2//-inden-2-one (58) and its dibenzo analog 60 enter into [4 + 2] cycloadditions with 27/-azirines to give 3//-2-benzazepines 59 and phenanthro[9,10-e]azepincs 61, respectively.96... [Pg.220]

Other examples of [2C+2S+1C0] cycloaddition reactions have been described by Herndon et al. by the use of chromium cyclopropyl(methoxy)carbenes. These complexes react with alkynes releasing ethene and forming cyclopenta-dienone derivatives, which evolve to cyclopentenone derivatives in the presence of chromium(O) and water [122] (Scheme 76). This reaction has been extended to intramolecular processes and also to the synthesis of some natural products [123]. These authors have also described another process involving a formal [2C+2S+1C0] cycloaddition reaction. Thus, the reaction of methyl and cyclo-propylcarbene complexes with phenylacetylene derivatives does not afford the expected benzannulated products, and several regioisomers of cyclopentenone derivatives are the only products isolated [124] (Scheme 76). [Pg.110]

Diene 265, substituted by a bulky silyl ether to prevent cycloaddition before the metathesis process, produced in the presence of catalyst C the undesired furanophane 266 with a (Z) double bond as the sole reaction product in high yield. The same compound was obtained with Schrock s molybdenum catalyst B, while first-generation catalyst A led even under very high dilution only to an isomeric mixture of dimerized products. The (Z)-configured furanophane 266 after desilylation did not, in accordance with earlier observations, produce any TADA product. On the other hand, dienone 267 furnished the desired macrocycle (E)-268, though as minor component in a 2 1 isomeric mixture with (Z)-268. Alcohol 269 derived from E-268 then underwent the projected TADA reaction selectively to produce cycloadduct 270 (70% conversion) in a reversible process after 3 days. The final Lewis acid-mediated conversion to 272 however did not occur, delivering anhydrochatancin 271 instead. [Pg.322]

The presence of two substituents at C-4 also strongly influences the regios-electivity as shown in the cycloaddition of dienone 13 with isoprene (2) (Equation 3.1). In violation of the para-rule for Diels-Alder reaction, only metfl-adduct was obtained [19,20]. [Pg.104]

The presence of the catalyst can also favor multiple Diels-Alder reactions of cycloalkenones. Two typical examples are reported in Schemes 3.6 and 3.7. When (E)-l-methoxy-1,3-butadiene (14) interacted with 2-cyclohexenone in the presence of Yb(fod)3 catalyst, a multiple Diels-Alder reaction occurred [21] and afforded a 1 1.5 mixture of the two tricyclic ketones 15 and 16 (Scheme 3.6). The sequence of events leading to the products includes the elimination of methanol from the primary cycloadduct to afford a bicyclic dienone that underwent a second cycloaddition. Similarly, 4-acetoxy-2-cyclopenten-l-one (17) (Scheme 3.7) has been shown to behave as a conjunctive reagent for a one-pot multiple Diels-Alder reaction with a variety of dienes under AICI3 catalysis, providing a mild and convenient methodology to synthesize hydrofluorenones [22]. The role of the Lewis acid is crucial to facilitate the elimination of acetic acid from the cycloadducts. The results of the reaction of 17 with diene... [Pg.104]

An example of stereocontrol by high pressure is given by the regio- and diastereoselective synthesis of hydrophenanthrenones [18] which are useful intermediates for synthesizing diterpenes and steroids, by EtAlCli-catalyzed cycloadditions of heteroannular bicyclic dienone 50 with (E)-piperylene (24) and 2,3-dimethyl-1,3-butadiene (51) (Scheme 5.4). [Pg.212]

The nitrone arising from reaction between (Z)-19-nor-5,10-secosteroidal ketone 260 a and M-methylhydroxylamine hydrochloride undergoes transannu-lar 1,3-dipolar cycloaddition to give isoxazolidines 261 and 262 and an aromatic derivative 263 originating from 261 (Scheme 28). Corresponding reaction of 260b produces two types of structurally different isoxazolidines 264 and 265 as well as the dienone 266. [Pg.38]

Vinylidenecycloalkanones 125 undergo cycloadditions with 1,3-dienes in the presence of a Lewis acid catalyst to give spirocyclic dienones 126 [107]. Good regio- and stereoselectivities were observed for unsymmetrical dienes. [Pg.767]

Bis-allylic oxidation of 23 and related cyclohexa-1,4-dienes provides a convenient and general preparation of cyclohexa-2,5-dien-l-ones (Scheme 7). These cross-conjugated die-nones are substrates for a variety of photochemical rearrangement and intramolecular cycloaddition reactions. Amide-directed hydrogenations of dienones 24a and 24b with the homogeneous iridium catalyst afford cyclohexanones 25a and 25b, containing three stereogenic centers on the six-... [Pg.3]

A very remote secondary H/D isotope effect has been measured for the 2 + 2-cycloaddition of TCNE to 2,7-dimethylocta-2,fran -4,6-triene. The reaction of nitric oxide with iV-benzylidene-4-methoxyaniline to produce 4-methoxybenzenediazonium nitrate and benzaldehyde is thought to proceed via a 2 + 2-cycloaddition between nitric oxide and the imine double bond. A novel mechanism for the stepwise dimerization of the parent silaethylene to 1,3-disilacyclobutane involves a low-barrier [1,2]-sigmatropic shift. Density functional, correlated ab initio calculations, and frontier MO analysis support a concerted 2 + 2-pathway for the addition of SO3 to alkenes. " The enone cycloaddition reactions of dienones and quinones have been reviewed. The 2 + 2-photocycloadditions of homochiral 2(5H)-furanones to vinylene carbonate are highly diastereoisomeric. ... [Pg.457]

The intramolecular nitrile oxide-alkene cycloaddition sequence has been used for the assembly of a great variety of natural products. A target that has received special attention is that of taxol (156), undoubtedly due to its unique structural features, its potent anticancer activity, and its hmited availability from natural sources (318,319). In 1984 Kozikowski et al. found that the treatment of nitro dienone 158 (obtained from the p-benzoquinone derivative 157) with p-chlorophe-nyl isocyanate under Mukaiyama conditions afforded the unexpected eight-mem-bered ring 159, which is related to ring B of taxol (156) (Scheme 6.79). [Pg.437]

Dienes, 11 addition to, 194-198 cisoid conformation, 197, 350 conjugated, 11 Cope rearrangement, 354 cycUsation, 346 cycloaddition to, 348 Diels-Alder reaction, 197, 349 excited state, 13 heat of hydrogenation, 16,194 isolated, 11 m.o.s of, 12 polymerisation, 323 Dienone intermediates, 356 Dienone/phenol rearrangement, 115 Dienophiles, 198, 350 Digonal hybridisation, 5 Dimedone, 202 Dimroth s Et parameter, 391 solvatochromic shifts, 391 solvent polarity, 391 Y and,392 Dinitrofluorobenzene proteins and, 172... [Pg.208]

Cyclobutenes are effective dienophiles.19-21 The stereochemistry of these reactions has been studied by employing 2,5-dimethyl-3,4-diphenylcyclopenta-2,4-dienone as the diene. Thus, r/.v-3,4-dich 1 orocyclobutene reacted with the dienone to give the anri,exo- and the anti,endo- so-mers 15 in a ratio of 4 1.22 Similar cycloaddition of the dienone with dimethyl tricy-clo[4,2,2.02 5]dcca-3,7,9-triene-7,8-dicarboxylatc gave the exo- and the rwfo-isomers 16 in a ratio of 6 1.22 The exo stereoselectivity is attributed to steric factors.22... [Pg.34]

Cyclobutane formation via light-induced [2 + 2] cycloaddition is probably one of the best studied photochemical reactions and has been reviewed thoroughly up to 1972 (Houben-Weyl, Vols. 4/5 a and 4/5 b). The most important types of C —C double-bond chromophores undergoing such reactions arc alkenes, 1,3-dienes, styrenes, stilbenes, arenes, hetarenes, cycloalk-2-enones, cyclohexa-2,4(and 2,5)-dienones, 1,4-benzoquinones, and heteroanalogs of these cyclic unsaturated carbonyl compounds. For p notocyciodimerizations see Houben-Weyl, Vol. 4/5 a, p 278 and for mixed [2 + 2] photocycloadditions of these same chromophores to alkenes see Section 1.3.2.3. [Pg.109]

Ethyl aluminum dichloride can catalyze the intramolecular cycloaddition of dienones 1 giving polycyclic cyclobutanes 2 in good yields.21 The effect of temperature and catalyst is important in determining the extent of [2 + 2] cycloadducts and ene-type products formed. [Pg.148]

While for 6,6-dialkyIcyclohexa-2,4-dienones. a-cleavage is much too efficient to allow competitive intramolecular cycloaddition processes, 4-alkenyloxy-6-methyl-2-pyrones, such as 17, form oxatricyclic lactones of type 18 on sensitized irradiation.50 51... [Pg.152]

Dimethoxy-3,4-dihydro-2//-pyran 274 was formed by the cycloaddition of chloromethyleneacetophenone to 1,1-dimethoxyethene followed by a spontaneous dehydrochlorination to 2//-pyran 275 together with isomeric dienone 276 on heating at 95°C.295... [Pg.212]

Diels-Alder reactions of a -ethenylidenecyclanonesJ These dienophiles (1) are readily obtained by reaction of lithium acetylide with epoxides followed by oxidation, but tend to polymerize when heated. Fortunately catalysts, such as BF3 etherate or ZnCl2, permit Diels-Alder reactions to proceed at low temperatures. This cycloaddition provides a regio- and stereoselective route to spirocylic dienones (2) in fair to good yield. [Pg.44]

Intramolecular photoaddition in cis-5,5,6-trimethylhepta-3,6-dien-2-one (284) takes a different course,296 yielding not the oxetane but the two dihydropyrans (285 and 286). This is in contrast to the inter-molecular cycloaddition of a, jS-unsaturated aldehydes to alkenes which affords only oxetanes, and has been accounted for in terms of diradical intermediates (287 and 288) formed from the s-cis conformation (284) of the dienone. The intermolecular equivalent is thought to occur by addition to the s-trans conformation. [Pg.76]

A review of photo-cycloadditions of dienones and quinones has been published.41 The first example of a Lewis acid-catalysed 2 + 2-cycloaddition of styrene with naphthoquinone has been reported.42 FMO methods have been used to investigate the effect of substituents on the regiochemistry of the 2 + 2-photo-cycloaddition of a, fi-unsaturated carbonyl compounds with substituted alkenes.43 Evidence has been presented for the presence of a triplet exciplex intermediate in the photo-cycloaddition of 4,4-dimethylcyclohexenone to 1,1-diphenylethylene.44 The intramolecular 2-1-2-photo-cycloaddition of 2-acyloxy-3-hexenoylcyclohexenones (26) is highly diastereo-selective yielding the tricyclic adduct (27) (Scheme 10).45... [Pg.434]


See other pages where Dienones cycloaddition is mentioned: [Pg.343]    [Pg.344]    [Pg.91]    [Pg.91]    [Pg.81]    [Pg.104]    [Pg.80]    [Pg.106]    [Pg.73]    [Pg.130]    [Pg.149]    [Pg.153]    [Pg.107]    [Pg.180]    [Pg.419]    [Pg.531]    [Pg.1101]    [Pg.434]    [Pg.530]    [Pg.36]    [Pg.530]   
See also in sourсe #XX -- [ Pg.99 , Pg.502 ]




SEARCH



Cyclohexa-2,4-dienones cycloaddition with

© 2024 chempedia.info