Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes styrene-butadiene rubber

The elastomer produced in greatest amount is styrene-butadiene rubber (SBR) Annually just under 10 lb of SBR IS produced in the United States and al most all of it IS used in automobile tires As its name suggests SBR is prepared from styrene and 1 3 buta diene It is an example of a copolymer a polymer as sembled from two or more different monomers Free radical polymerization of a mixture of styrene and 1 3 butadiene gives SBR... [Pg.408]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

In one of the first reports on fiber reinforcement of rubber, natural rubber (NR) was used by Collier [9] as the rubber matrix, which was reinforced using short cotton fibers. Some of the most commonly used rubber matrices for fiber reinforcement are NR, ethylene-propylene-diene monomer (EPDM) rubber, styrene-butadiene rubber (SBR), polychloroprene rubber, and nitrile rubber [10-13]. These rubbers were reinforced using short and long fibers including jute, silk, and rayon [14—16]. [Pg.353]

The accelerated sulfur vulcanization of general-purpose diene rubbers (e.g., NR, styrene-butadiene rubber [SBR], and butadiene rubber [BR]) by sulfur in the presence of organic accelerators and other rubbers, which are vulcanized by closely related technology (e.g., ethylene-propylene-diene monomer [EPDM] mbber, butyl rubber [HR], halobutyl mbber [XIIR], nitrile rubber [NBR]) comprises more than 90% of all vulcanizations. [Pg.416]

Use of organosilanes in reinforced rubbers 5 (NR natural rubber, SBR styrene-butadiene rubber, EPDM ethylene-propylene-diene rubber)... [Pg.170]

Rubbers were compounded with the ingredients and vulcanized as shown in Table I. The vulcanizates were cut off from the sheet with JIS (Japanese Industrial Standard) No. 3 dumbbell cutter to prepare the samples for heat aging. Styrene-butadiene rubber (SBR), cw-polybuta-diene (BR), and butyl rubber (HR) vulcanizates were aged in the Geer oven at 100°C. for 48 hours. Natural rubber (NR) was aged at 100°C. for 36 hours. [Pg.127]

The elastomer determines most of the physical and chemical characteristics of a rubber compound. Typical elastomers are natural elastomers such as natural rubber (NR), sometimes called crepe, and synthetic elastomers such as butyl (including chlorobutyl and bromobutyl), ethylene propylene diene monomer (EPDM), and styrene butadiene rubber (SBR). A list of commonly used elastomers is shown in Table 2. [Pg.1466]

Copolymerization of styrene and conjugated dienes is another attractive subject which provides the most commonly used styrene-butadiene rubbers (SBRs). Boisson reported that by using neodymium amide Nd N(SrMe3)2 3 and TIBA and DEAC, SBRs with 10-15 mol% of styrene were produced [189], although drops in both activity and molecular weight were observed as compared with those of... [Pg.98]

Amounts are parts by weight per 100 parts by weight rubber. Diene rubber includes natural rubber, polyisoprene rubber, butadiene rubber, and styrene-butadiene rubber. [Pg.2692]

Elastomers include natural rubber (polyisoprene), synthetic polyisoprene, styrene-butadiene rubbers, butyl rubber (isobutylene-isoprene), polybutadiene, ethylene-propylene-diene (EPDM), neoprene (polychloroprene), acrylonitrile-butadiene rubbers, polysulfide rubbers, polyurethane rubbers, crosslinked polyethylene rubber and polynorbomene rubbers. Typically in elastomer mixing the elastomer is mixed with other additives such as carbon black, fillers, oils/plasticizers and accelerators/antioxidants. [Pg.408]

A process has been developed for electroplating a PPA resin, modified with ethylene propylene diene monomer rubber, ethylene-propylene rubber, and styrene-butadiene rubber. As etching solution, chromic acid is used. However, it has been found that the concentration of Cr + is crucial for the success of the method. The concentration of Cr + is in the range of 50-55 gU Low levels of Cr + result in poor adhesion of the final metal plating, while high levels of Cr + can cause the formation of small blisters in the metal plating. The influence of the process parameters on the peel strength is shown in Table 12.9. [Pg.412]

Polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polystyrene (PS), polymethylmethacrylate (PMMA) Ethylene-tetratluoro-ethylene (ETFE), tetrafluoroethylene/ hexafluoropropylene (THV), polyethylene (PE), polypropylene (PP) Epoxy resin (EP), polyester resin (UP), phenol resin (PF), resorcin resin (RF), polyurethane (PUR) Styrene-butadiene-rubber (SBR), polybutadiene-rubber (BR), ethylene-propylene-diene-rubber (EPDM)... [Pg.208]

Polysiloxane Styrene-butadiene rubber Ethylene-propylene-diene terpolymer... [Pg.55]

All diene rubbers discussed so far, natural rubber, styrene-butadiene rubbers, poly-butadienes), butyl rubbers, and ethylene-propylene rubbers, consist of aliphatic or aromatic monomeric units. They swell readily in aliphatics they have poor oil resistance. But the free radical copolymerization of acrylonitrile with butadiene leads to what is known as nitrile rubber, which has good oil resistance because of the many polar nitrile groups. However, the rebound elasticity and the low-temperature flexibility decrease with increasing nitrile fraction. Consequently, NBR is mainly used for fuel hoses, motor gaskets, transport belts, etc. [Pg.736]

Polymers Thermoplastic elastomers Styrene-butadiene-styrene (SBS), styrene-butadiene-rubber (SBR), styrene-isoprene-styrene (SIS), styrene-ethyl-butadiene-styrene (SEBS), ethyl-propyl-dien tetropolymer (EPDM), isobutene-isoprene copolymer (NR), polybutadiene (PBD),natural rubber (l),(2),(3),(4), [8]. [9], [10], [II], [13]... [Pg.141]

Elastomers are elastic materials that stretch to high extensions and rapidly recover their original dimensions once the applied stress is released. They are formed by a loose network. Styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) are examples of important elastomers. [Pg.6]

Accelerated-sulfur vulcanization is the most widely used method. For many applications, it is the only rapid crossUnking technique that can, in a practical manner, give the delayed action required for processing, shaping, and forming before the formation of the intractable vulcanized network. It is used to vulcanize natural rubber (NR), synthetic isoprene rubber (IR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), butyl rubber (HR), chlorobutyl rubber (ClIR), bromobutyl rubber (BUR), and ethylene-propylene-diene-monomer rubber (EPDM). The reactive moiety for all of these elastomers can be represented by... [Pg.333]

Most of the earlier efforts have been paid in changing the surface character of clay minerals. Albeit the modified clay minerals are fairly compatible with the polar rubber like acrylonitrile butadiene rubber (NBR), carboxylated nitrile rubber (XNBR), chloroprene rubber (CR), etc., its dispersion in nonpolar rubbers like NR, styrene butadiene rubber (SBR), ethylene propylene diene rubber (EPDM), butadiene rubber (BR), etc. is rather unsatisfactory. Figure 8.3(a) and (b) display the state of dispersion of organomodified... [Pg.247]

Properties Ethylene propylene diene Nitrile rubber Poly- chloroprene Natural rubber Poly- isoprene Styrene butadiene rubber Butyl rubber Polybutadiene... [Pg.1116]

Use of nanoparticles as fillers in mbbers is highly relevant because end use applications of rubber compounds require filler reinforcement. Most of the literature on rubber nanocomposites is based on the use of nanoclay as the filler. It has been shown that incorporation of nanoclay in synthetic rubbers, like styrene butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), ethylene propylene diene monomer (EPDM) mbber etc. enhances the mechanical, anti-ageing and barrier properties. [Pg.163]


See other pages where Dienes styrene-butadiene rubber is mentioned: [Pg.49]    [Pg.464]    [Pg.96]    [Pg.251]    [Pg.275]    [Pg.167]    [Pg.272]    [Pg.145]    [Pg.556]    [Pg.645]    [Pg.280]    [Pg.198]    [Pg.128]    [Pg.191]    [Pg.112]    [Pg.348]    [Pg.552]    [Pg.189]    [Pg.321]    [Pg.110]    [Pg.79]    [Pg.225]    [Pg.254]    [Pg.111]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Diene rubbers

Diene rubbers styrene-butadiene rubber

Dienes butadiene

Styrene-butadiene

Styrene-butadiene rubber

© 2024 chempedia.info