Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes reaction with carboxylate

The reaction of alkenyl mercurials with alkenes forms 7r-allylpalladium intermediates by the rearrangement of Pd via the elimination of H—Pd—Cl and its reverse readdition. Further transformations such as trapping with nucleophiles or elimination form conjugated dienes[379]. The 7r-allylpalladium intermediate 418 formed from 3-butenoic acid reacts intramolecularly with carboxylic acid to yield the 7-vinyl-7-laCtone 4I9[380], The /i,7-titisaturated amide 421 is obtained by the reaction of 4-vinyl-2-azetidinone (420) with an organomercur-ial. Similarly homoallylic alcohols are obtained from vinylic oxetanes[381]. [Pg.81]

Adipic acid, 219.2 g (1.5 mol), and 77.6 g (1.25 mol) of 1,2-ethanediol are weighed into a 500-mL glass reactor equipped with a mechanical stirrer, a nitrogen inlet, and a distillation head connected to a condenser and a receiver fiask. The reactor is placed in a salt bath preheated at 180°C and the temperature is dien raised gradually to 220°C (see note at end of procedure) until the greater part of water has been removed (3 h). The reactor is cooled down to 160°C and vacuum is applied slowly to ca. 0.07 mbar (30 min). Temperature is ramped to 220°C (see note below) at a rate of l°C/min and reaction is continued for an additional 90 min. At the end of reaction, the carboxylic acid endgroup content is close to 1.90 mol/kg. No purification of final polyester is carried out. [Pg.95]

Isomerization has been observed with many a,j3-unsaturated carboxylic acids such as w-cinnamic 10), angelic, maleic, and itaconic acids (94). The possibility of catalyzing the interconversion of, for example, 2-ethyl-butadiene and 3-methylpenta-l,3-diene has not apparently been explored. The cobalt cyanide hydride will also catalyze the isomerization of epoxides to ketones (even terminal epoxides give ketones, not aldehydes) as well as their reduction to alcohols. Since the yield of ketone increases with pH, it was suggested that reduction involved reaction with the hydride [Co" (CN)jH] and isomerization reaction with [Co (CN)j] 103). A related reaction is the decomposition of 2-bromoethanol to acetaldehyde... [Pg.438]

Unlike the case of the Ni-catalyzed reaction, which afforded the branched thioester (Eq. 7.1), the PdCl2(PPh3)3/SnCl2-catalyzed reaction with 1-alkyne and 1-alkene predominantly provided terminal thioester 6 in up to 61% yield in preference to 7. In 1983, a similar hydrothiocarboxylation of an alkene was also documented by using a Pd(OAc)2/P( -Pr)3 catalyst system with t-BuSH to form 8 in up to 79% yield (Eq. 7.6) [16]. It was mentioned in the patent that the Pt-complex also possessed catalyhc activity for the transformation, although the yield of product was unsatisfactory. In 1984, the hydrothiocarboxylation of a 1,3-diene catalyzed by Co2(CO)g in pyridine was also reported in a patent [17]. In 1986, Alper et al. reported that a similar transformation to the one shown in Eq. (7.3) can be realized under much milder reaction conditions in the presence of a 1,3-diene [18], and the carboxylic ester 10 was produced using an aqueous alcohol as solvent (Eq. 7.7) [19]. [Pg.219]

An intramolecular version of the Diels-Alder reaction with a diene-carboxylate was used by Williams et al. in the synthetic study of the antibiotic ilicicolin H.91 The interesting aspect of this work is that they found that under aqueous conditions, there is an observed reversal of regioselectivity (Eq. 12.31). In toluene, there is a 75 25 ratio of a/b while in degassed water the ratio of a/b is 40 60. [Pg.396]

Carbon dioxide instead of aldehydes can be involved in Ni(0)-promoted reductive coupling reactions (Equations (76) and (77) Scheme 90).434,434a 434c A stoichiometric amount of Ni(COD)2/DBU reacts with C02 and dienes, alkynes, or allenes to afford a metallacycle intermediate. This metallacycle reacts with organozinc compounds or aldehydes in one-pot to give carboxylic acid derivatives. As shown in Scheme 90, double carboxylation occurs in the presence of dimethylzinc, where the stereochemical outcome is opposite to that of the reaction with diphenylzinc. [Pg.459]

The 1,4-addition of RCu to a diene compound can generate allylcopper species, which is active toward electrophiles.53 The silylcupration of 1,3-dienes with PhMe2SiCuCNLi56 followed by reaction with C02 yielded the /3,7-unsaturated carboxylic acids 110 as shown in Scheme 39.57 The carboxylation took place regioselectively at the 7-position of the cr-allylcopper intermediate 113. [Pg.552]

Schafer and coworkers devised a useful synthetic procedure based on this reaction [26]. Thus, the Diels-Alder reaction of /i-silylacrylic acid with cyclo-pentadiene gave the adduct which was oxidized anodically with the elimination of the carboxyl and the silyl groups. Successful formation of norbonadiene indicates that /J-silylacrylic acid can be used an a synthon of acetylene in Diels-Alder reactions with dienes (Scheme 33). [Pg.79]

The linear telomerization reaction of dienes was one of the very first processes catalyzed by water soluble phosphine complexes in aqueous media [7,8]. The reaction itself is the dimerization of a diene coupled with a simultaneous nucleophilic addition of HX (water, alcohols, amines, carboxylic acids, active methylene compounds, etc.) (Scheme 7.3). It is catalyzed by nickel- and palladium complexes of which palladium catalysts are substantially more active. In organic solutions [Pd(OAc)2] + PPhs gives the simplest catalyst combination and Ni/IPPTS and Pd/TPPTS were suggested for mnning the telomerizations in aqueous/organic biphasic systems [7]. An aqueous solvent would seem a straightforward choice for telomerization of dienes with water (the so-called hydrodimerization). In fact, the possibility of separation of the products and the catalyst without a need for distillation is a more important reason in this case, too. [Pg.194]

Beccalli et al. reported a synthesis of carbazomycin B (261) by a Diels-Alder cycloaddition using the 3-vinylindole 831 as diene, analogous to Pindur s synthesis of 4-deoxycarbazomycin B (619). The required 3-vinylindole, (Z)-ethyl 3-[(l-ethoxy-carbonyloxy-2-methoxy)ethenyl]-2-(ethoxy-carbonyloxy)indole-l-carboxylate (831), was synthesized starting from indol-2(3H)one (830) (620). The Diels-Alder reaction of the diene 831 with dimethyl acetylene dicarboxylate (DMAD) (535) gave the tetrasubstituted carbazole 832. Compound 832 was transformed to the acid 833 by alkaline hydrolysis. Finally, reduction of 833 with Red-Al afforded carbazomycin B (261) (621) (Scheme 5.99). [Pg.254]

Reaction of l-azirine-3-methylaciylates (155) with imidazoles and pyrazoles under mild conditions results in the formation of 2-aza-1,3-dienes (156), which are useful as dienes in hetero Diels-Alder reactions with electron-deficient dienophiles <99JOC49>. When the related methyl 2-aryl-2ff-azirine-3-carboxylate (157) was used as fee substrate, reaction with an amine induced a ting opening by addition of the amino group onto fee C=N bond followed by cleavage to provide enediamine 158 <99JCS(P1)1305>. [Pg.73]

The Pechmann and Knoevenagel reactions have been widely used to synthesise coumarins and developments in both have been reported. Activated phenols react rapidly with ethyl acetoacetate, propenoic acid and propynoic acid under microwave irradiation using cation-exchange resins as catalyst <99SL608>. Similarly, salicylaldehydes are converted into coumarin-3-carboxylic acids when the reaction with malonic acid is catalysed by the montmorillonite KSF <99JOC1033>. In both cases the use of a solid catalyst has environmentally friendly benefits. Methyl 3-(3-coumarinyl)propenoate 44, prepared from dimethyl glutaconate and salicylaldehyde, is a stable electron deficient diene which reacts with enamines to form benzo[c]coumarins. An inverse electron demand Diels-Alder reaction is followed by elimination of a secondary amine and aromatisation (Scheme 26) <99SL477>. [Pg.327]

The oxazoles and their derivatives have played a variety of fascinating roles in the preparation of new molecular systems. Much of this chemistry stems from their ability to serve as diene components (azabutadiene equivalents) in reactions with a variety of dienophilic agents, to undergo nuclear metallation, to activate attached aryl or alkyl groups to deprotonation (thus functioning as masked aldehydes, ketones or carboxylic acid groups), and to serve as useful electrophiles on conversion to AT-alkylated salts. [Pg.444]

As 2-vinylfuran rapidly polymerizes even in a nitrogen atmosphere in the presence of a stabilizer, yields obtained for these Diels-Alder reactions were very low. In fact, when the more stable 5-(4-nitrophenyl)-2-vinylfuran lb reacted with DMAD, the yield of the aromatized cycloadduct, dimethyl 2-(4-nitrophenyl)benzofuran-4,5-dicarboxylate 4b, was 50%. The 4-nitrophenyl group not only deactivated the vinylfuran for oxidation and polymerization, but also deactivated the diene system toward cycloadditions, and the reaction was successful only when conducted in boiling xylene. The decrease in reactivity of the reactive diene may account for the relatively low yield of methyl 2-(4-nitrophenyl)benzo-furan-4-carboxylate 6b obtained in a similar reaction with MP (73-AJC1059). [Pg.341]

Benzyne is an important reactive intermediate especially useful for the construction of polycyclic compounds via cycloaddition reactions with various dienes. Several benzyne precursors, including diphenyliodonium-2-carboxylate [ 1 ], have been previously used for the generation of benzyne by thermal decomposition. More recently, several new precursors that generate benzyne quantitatively under very mild conditions have been developed [105 -108]. An efficient benzyne precursor, iodonium triflate 109, can be readily prepared by the reaction of l,2-bis(trimethylsilyl)benzene 108 with [(diacetoxy)iodo]benzene in the presence of trifluoromethanesulfonic acid (Scheme 47) [105]. [Pg.118]

Dienes (allenes) are also used for heteroannulation with 68 and 69. The eight-membered nitrogen heterocycle 78 is constructed by the reaction of 1,2-undecadiene (77) with o-(3-aminopropyl)iodobenzene (76) [34]. The lactones are prepared by trapping the 7i-allyl intermediates with carboxylic acids as an oxygen nucleophile. The unsaturted lactone 81 is prepared by the reaction of /1-bromo-v,/ -unsaturated carboxylic acid 79 with the allene 80 [35]. In the carboannulation of 82 with 1,4-cyclohexadiene (83), the 1,3-diene 85 is generated by / -elimination of 84, and the addition of H-PdX forms the 7i-allylpalladium 86, which attacks the malonate to give 87 [36],... [Pg.40]

A unique variant of catalyst preformation in the absence of dienes was described by Enichem in an early patent on Nd-BR. The active Nd catalyst was prepared by the reaction of neodymium oxide with carboxylic acid and (BuCl in vaseline at 80 °C. Subsequently, aqueous HC1 was added at 80 °C. Finally, the addition of the aluminum alkyl co catalyst yielded the active Nd catalyst [389,390]. [Pg.48]

Diels-Alder reactions. The laboratories of Breslow and of Grieco have reported that water can enhance the rate of Diels-Alder reactions of dienes that possess carboxylic acid or similar hydrophilic groups (12, 314). Liotta et al. have examined solvent effects on cycloaddition reactions of benzoquinones with dienes substituted with a relatively hydrophobic group, and report significant rate enhancement in ethylene glycol relative to benzene (26 1) or even to reactions in the absence of a solvent. They attribute the solvent effect to aggregation of the diene and the quinone. [Pg.156]

Although some carbenes are reported not to add to cyclopropenes207, there are several examples of inter- and intra-molecular addition leading initially to the formation of bicyclobutanes. l,2-Diphenylcyclopropene-3-carboxylates are converted to a mixture of three stereoisomeric bicyclo[1.1.0]butanes by reaction with ethoxy-carbonylcarbene generated from the thermolysis of ethyl diazoacetate an additional product is the diene (278) which is apparently formed by rearrangement of an intermediate zwitter ion208). It should be noted, however, that cyclopropenes readily undergo addition to diazo-compounds, and that subsequent transformations may then lead to bicyclobutanes (see Section 8), and that a free carbene may therefore not be involved in the above process. [Pg.183]

Carboxylic acid dianions have also been alkylated by reaction with aziridines to give novel y-amino substituted acids in good yields508. Methoxybenzoic acids have also been alkylated in a reductive process by reaction with lithium in ammonia followed by treatment with an alkyl halide. The product formed in this one-pot reaction is an alkylated cyclohexa-2,5-diene carboxylic acid507. [Pg.732]

Aziridines can also be synthesized from their unsaturated azirine counterparts or existing aziridine rings. The first examples of enantiopure 2-substituted 2Z/-azirine 3-carboxylates 46 were prepared via dehydrochlorination of methyl 2-chloroaziridine-2-carboxylates. Bicyclic and tricyclic aziridines such as 47 were then generated via an aza-Diels-Alder reaction with the corresponding dienes <070L1707>. A related azomethine cycloaddition in the presence of an aziridine has also been reported <07JOC8506>. [Pg.65]

Activation of 3-alkyl and 3-phenyl-2H-aziiines by Lewis acids also promotes their participation in hetero Diels-Alder reactions with a variety of dienes. This methodology circumvents the previous requirement of needing an electron-withdrawing carboxyl moiety at the 3-position of the 2H-azirine ring (01TL9289). Thus, the reaction of 2H-azirine 125 with Danishefsky s diene gave the endo-cycloadduct 126... [Pg.21]


See other pages where Dienes reaction with carboxylate is mentioned: [Pg.25]    [Pg.210]    [Pg.667]    [Pg.550]    [Pg.340]    [Pg.231]    [Pg.167]    [Pg.253]    [Pg.188]    [Pg.282]    [Pg.216]    [Pg.32]    [Pg.341]    [Pg.503]    [Pg.403]    [Pg.872]    [Pg.216]    [Pg.85]    [Pg.282]    [Pg.324]    [Pg.785]   


SEARCH



Carboxylates reaction with

Carboxylation reaction with

Carboxylic reactions with

Diene reaction

Dienes carboxylation

Dienes reactions with carboxylic acids

Dienes, reactions

Reactions with dienes

© 2024 chempedia.info