Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenes reaction with dienes

The reaction of benzyne with cyclohexadiene has been known for some time 4>, but although a number of steroidal cis-dienes are readily available no reactions with arynes had been reported prior to our beginning such investigations 145>. This was somewhat surprising in view of the number of reports concerning the modification of steroids by means of reactions with carbenes 146 i49) and the known Diels-Alder reactions of steroidal dienes and trienes iso.isi). [Pg.67]

Cheletropic additions at the C,C double bond of alkenyl azides, for example, reactions with carbenes to generate azidocyclopropanes or epoxidation are weU-known for several decades. Recently, the 1,4-addition of sulfur dioxide to 2-azidobuta-l,3-dienes 92 has been investigated (Scheme 5.27). Moderate yields of the corresponding 3-sulfolenes 226 were obtained. [Pg.143]

Simple 1,3-dienes also undergo a thermal monocyclopropanation reaction with methoxy(alkyl)- and methoxy(aryl)carbene complexes of molybdenum and chromium [27]. The most complete study was carried out by Harvey and Lund and they showed that this process occurs with high levels of both regio-and diastereoselectivity. The chemical yield is significantly higher with molybdenum complexes [27a] (Scheme 7). Tri- and tetrasubstituted 1,3-dienes and 3-methylenecyclohexene (diene locked in an s-trans conformation) fail to react [28]. The monocyclopropanation of electronically neutral 1,3-dienes with non-heteroatom-stabilised carbene complexes has also been described [29]. [Pg.67]

The Diels-Alder reaction of activated olefins is considered as one of the most useful and predictable reactions in organic synthesis. The electron-acceptor character of the pentacarbonylmetal fragment makes a,/J-unsaturated carbene complexes ideal substrates for the [4S+2C] cycloaddition reaction with dienes. [Pg.94]

Intermolecular [4C+2S] cycloaddition reactions where the diene moiety is contained in the carbene complex are less frequent than the [4S+2C] cycloadditions summarised in the previous section. However, 2-butadienylcarbene complexes, generated by a [2+2]/cyclobutene ring opening sequence, undergo Diels-Alder reactions with typical dienophiles [34,35] (Scheme 59). Also, Wulff et al. have described the application of pyranylidene complexes, obtained by a [3+3] cycloaddition reaction (see Sect. 2.8.1), in the inverse-electron-demand Diels-Alder reaction with enol ethers and enamines [87a]. Later, this strategy was applied to the synthesis of steroid-like ring skeletons [87b] (Scheme 59). [Pg.99]

Electronically rich 1,3-butadienes such as Danishefsky s diene react with chromium alkenylcarbene complexes affording seven-membered rings in a formal [4S+3C] cycloaddition process [73a, 95a]. It is important to remark on the role played by the metal in this reaction as the analogous tungsten carbene complexes lead to [4S+2C] cycloadducts (see Sect. 2.9.1.1). Formation of the seven-membered ring is explained by an initial cyclopropanation of the most electron-rich double bond of the diene followed by a Cope rearrangement of the formed divinylcyclopropane (Scheme 65). Amino-substituted 1,3-butadienes also react with chromium alkenylcarbene complexes to produce the corre-... [Pg.102]

Alkenes of all types can be converted to cyclopropane derivatives by this reaction (though difficulty may be encountered with sterically hindered ones). Even tetracyanoethylene, which responds very poorly to electrophilic attack, gives cyclopropane derivatives with carbenes.Conjugated dienes give 1,2 addition ... [Pg.1085]

In order to rationalize the catalyst-dependent selectivity of cyclopropanation reaction with respect to the alkene, the ability of a transition metal for olefin coordination has been considered to be a key factor (see Sect. 2.2.1 and 2.2.2). It was proposed that palladium and certain copper catalysts promote cyclopropanation through intramolecular carbene transfer from a metal carbene to an alkene molecule coordinated to the same metal atom25,64. The preferential cyclopropanation of terminal olefins and the less hindered double bond in dienes spoke in favor of metal-olefin coordination. Furthermore, stable and metastable metal-carbene-olefin complexes are known, some of which undergo intramolecular cyclopropane formation, e.g. 426 - 427 415). [Pg.243]

Selected examples of the reaction of carbenes with conjugated dienes - 1... [Pg.321]

As noted with the reactions between terpenes and dihalocarbenes, mono-insertion adducts at the more electron-rich sites can be isolated from the reaction of non-conju-gated acyclic and cyclic dienes although, depending on the reaction conditions, the bis-adducts may also be formed. Norbomadiene produces both 1,2-endo and 1,2-exo mono-insertion adducts with dichlorocarbene, as well as a 1,4-addition product (Scheme 7.4) [67]. The mono adduct produced from the reaction with dimethylvinylidene carbene rearranges thermally to yield the ring-expanded product (Scheme 7.4) [157] a similar ring-expanded product is produced with cyclo-hexylidene carbene [149]. [Pg.321]

Cyclopropane formation occurs from reactions between diazo compounds and alkenes, catalyzed by a wide variety of transition-metal compounds [7-9], that involve the addition of a carbene entity to a C-C double bond. This transformation is stereospecific and generally occurs with electron-rich alkenes, including substituted olefins, dienes, and vinyl ethers, but not a,(J-unsaturated carbonyl compounds or nitriles [23,24], Relative reactivities portray a highly electrophilic intermediate and an early transition state for cyclopropanation reactions [15,25], accounting in part for the relative difficulty in controlling selectivity. For intermolecular reactions, the formation of geometrical isomers, regioisomers from reactions with dienes, and enantiomers must all be taken into account. [Pg.195]

Dioximato-cobalt(II) catalysts are unusual in their ability to catalyze cyclopropanation reactions that occur with conjugated olefins (e.g., styrene, 1,3-butadiene, and 1-phenyl-1,3-butadiene) and, also, certain a, 3-unsaturated esters (e.g., methyl a-phenylacrylate, Eq. 5.13), but not with simple olefins and vinyl ethers. In this regard they do not behave like metal carbenes formed with Cu or Rh catalysts that are characteristically electrophilic in their reactions towards alkenes (vinyl ethers > dienes > simple olefins a,p-unsaturated esters) [7], and this divergence has not been adequately explained. However, despite their ability to attain high enantioselectivities in cyclopropanation reactions with ethyl diazoacetate and other diazo esters, no additional details concerning these Co(II) catalysts have been published since the initial reports by Nakamura and Otsuka. [Pg.208]

When phenyl(trimethylsilyl)diazomethane (20) is pyrolyzed in the gas phase, typical reactions of carbene 21 can be observed (see Section III.E.4). However, copyrolysis with alcohols or carbonyl compounds generates again products which are derived from silene 2239,40 (equation 6). Thus, alkoxysilanes 23 are obtained in the presence of alcohols and alkenes 24 in the presence of an aldehyde or a ketone. 2,3-Dimethylbuta-l,3-diene traps both the carbene (see Section ni.E.4) and the silene. [Pg.716]

Although some carbenes are reported not to add to cyclopropenes207, there are several examples of inter- and intra-molecular addition leading initially to the formation of bicyclobutanes. l,2-Diphenylcyclopropene-3-carboxylates are converted to a mixture of three stereoisomeric bicyclo[1.1.0]butanes by reaction with ethoxy-carbonylcarbene generated from the thermolysis of ethyl diazoacetate an additional product is the diene (278) which is apparently formed by rearrangement of an intermediate zwitter ion208). It should be noted, however, that cyclopropenes readily undergo addition to diazo-compounds, and that subsequent transformations may then lead to bicyclobutanes (see Section 8), and that a free carbene may therefore not be involved in the above process. [Pg.183]


See other pages where Carbenes reaction with dienes is mentioned: [Pg.144]    [Pg.166]    [Pg.25]    [Pg.86]    [Pg.168]    [Pg.274]    [Pg.50]    [Pg.21]    [Pg.152]    [Pg.491]    [Pg.266]    [Pg.310]    [Pg.322]    [Pg.155]    [Pg.876]    [Pg.250]    [Pg.613]    [Pg.259]    [Pg.617]    [Pg.796]    [Pg.1002]    [Pg.199]    [Pg.228]    [Pg.449]    [Pg.2412]    [Pg.32]    [Pg.228]    [Pg.449]    [Pg.335]    [Pg.92]    [Pg.77]    [Pg.55]    [Pg.289]   
See also in sourсe #XX -- [ Pg.1985 ]




SEARCH



1.3- Dienes cycloaddition reactions with alkynyl carbene

1.3- Dienes reactions with iron carbene complexes

Carbene reactions

Carbenes reactions

Carbenes, alkynyltransition metal complexes cycloaddition reactions with 1,3-dienes

Diene reaction

Dienes, reactions

Reaction with carbenes

Reactions with dienes

With Carbenes

© 2024 chempedia.info