Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes arylation

As expected from the results obtained in the arylation of dienes with secondary amines (Section 4.4.5.l.2.iii), the amine attacks the least-substituted (hindered) end of the ir-allylic group. An exception to this behavior occurs in these reactions as it did in the diene arylation case where there are two methyl substituents on one terminal allylic carbon, in which case the amine attacks this tertiary carbon (equation 34).s7 If groups larger than methyls are present on one terminal allylic carbon, steric hindrance to attack at that carbon causes reaction at the other end of the allyl system. [Pg.852]

Palladium(0)-catalysed coupling of non-conjugated dienes, aryl iodides and stabilized carbon nucleophiles has been developed468. An incredibly high yield (86%) of pentacycle 343 has been obtained from a Pd(0)-catalysed zipper reaction of acetylenic pentaene 342. The reaction is triggered off by a Pd-catalysed cyclization of acetylenic bond and the first olefinic bond469. [Pg.1202]

Another example of a tandem reaction, in this case an intramolecular Heck insertion followed by a r-allylpalladium displacement, comes from our opium alkaloid total synthesis project (Scheme 6-25) L53J. Treatment of diene aryl iodide 142 under forcing Heck cyclization conditions provided 143 in 56% yield in which the two final rings of the opium alkaloid skeleton are constructed in this one key step. [Pg.138]

Cooper et al. reported that the cascade reaction of the palladium-catalyzed cyclization and the Barbier-type allylation of the 1,3-diene-aryl iodide 514, the aldehydes 515, and indium gave the heterocycles 516 in good yields (Scheme 154).220b The reaction proceeds through oxidative addition of a C—I bond of 514 to Pd(0) and subsequent insertion of a double bond of 517 to give the jr-allylpalladium intermediate 518. Transmetalation of the jr-allylpalladium 518 with indium leads to the allylindium complex 519, and the following reaction with the aldehydes 515 gives 516. [Pg.47]

OAlMea > 0P(0R)2 > OSiRs alkenyl aluminiums, prepared for example by the carboalumination of acetylenes," participate in this reaction with retention of stereochemistry to give 1,4-dienes." Aryl phosphates are found to have a reactivity similar to that of aryl chlorides in their reaction with organoaluminium reagents, and have been used to prepare alkyl, alkenyl, and aryl benzenes in a nickel-catalysed reaction." ... [Pg.255]

Addition of several organomercury compounds (methyl, aryl, and benzyl) to conjugated dienes in the presence of Pd(II) salts generates the ir-allylpalladium complex 422, which is subjected to further transformations. A secondary amine reacts to give the tertiary allylic amine 423 in a modest yield along with diene 424 and reduced product 425[382,383]. Even the unconjugated diene 426 is converted into the 7r-allyllic palladium complex 427 by the reaction of PhHgCI via the elimination and reverse readdition of H—Pd—Cl[383]. [Pg.82]

The oxidative coupling of toluene using Pd(OAc)2 via />-tolylmercury(II) acetate (428) forms bitolyl[384]. The aryl-aryl coupling proceeds with copper and a catalytic amount of PdCl2 in pyridine[385]. Conjugated dienes are obtained by the coupling of alkenylmercury(II) chlorides[386]. [Pg.82]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

An efficient carboannulation proceeds by the reaction of vinylcyclopropane (135) or vinylcyclobutane with aryl halides. The multi-step reaction is explained by insertion of alkene, ring opening, diene formation, formation of the TT-allylpalladium 136 by the readdition of H—Pd—I, and its intramolecular reaction with the nucleophile to give the cyclized product 137[I08]. [Pg.147]

I.l.IJ Reactions nitlr 1,2-, 1.3-. ami 1.4-dienes. The reaction of conjugated dienes with aryl and alkenyl halides can be explained by the following mechanism. Insertion of a conjugated 1.3-diene into an aryl or alkenylpalladium bond gives the T-allvlpalladium complex 243 as an intermediate, which reacts further... [Pg.163]

In the reaction of aryl and alkenyl halides with 1,3-pentadiene (248), amine and alcohol capture the 7r-allylpalladium intermediate to form 249. In the reactions of o-iodoaniline (250) and o-iodobenzyl alcohol (253) with 1,3-dienes, the amine and benzyl alcohol capture the Tr-allylpalladium intermediates 251 and 254 to give 252 and 255[173-175]. The reaction of o-iodoaniline (250) with 1,4-pen tadiene (256) affords the cyclized product 260 via arylpalladiuni formation, addition to the diene 256 to form 257. palladium migration (elimination of Pd—H and readdition to give 258) to form the Tr-allylpalladium 259, and intramolecular displacement of Tr-allylpalladium with the amine to form 260[176], o-Iodophenol reacts similarly. [Pg.164]

Chlorobenzenes activated by coordination of Cr(CO)3 react with terminal alkynes[253). The 1-bromo-1,2-alkadiene 346 reacts with a terminal alkyne to afford the alka-l,2-dien-4-yne 347[254], Enol tritlates are used for the coupling with terminal alkynes. Formation of 348 in the syntheses of ginkgolide[255] and of vitamin D are examples[256] Aryl and alkenyl fluorides are inert. Only bromide or iodide is attacked when the fluoroiodoalkene 349 or fluoroiodoar-ene is subjected to the Pd-catalyzed coupling with alkynes[257-259]. [Pg.176]

Aryl halides react with a wide variety of aryl-, alkenyl- and alkylstan-nanes[548-550]. Coupling of an aryl tritlate with an arylstannane is a good preparative method for diaryls such as 688. The coupling of alkenylstannanes with alkenyl halides proceeds stereospecifically to give conjugated dienes 689. The allylstannane 690 is used for allylation[397,546,551-553]. Aryl and enol triflates react with organostannanes smoothly in the presence of LiCl[554]. [Pg.229]

The intramolecular coupling of organostannanes is applied to macrolide synthesis. In the zearalenone synthesis, no cyclization was observed between arylstannane and alkenyl iodide. However, intramolecular coupling take.s place between the alkenylstannane and aryl iodide in 706. A similar cyclization is possible by the reaction of the alkenylstannane 707 with enol triflate[579]. The coupling was applied to the preparation of the bicyclic 1,3-diene system 708[580]. [Pg.233]

The enone 807 is converted into the dienol triflatc 808 and then the conjugated diene 809 by the hydrogenolysis with tributylammonium for-mate[689,690]. Naphthol can be converted into naphthalene by the hydrogenolysis of its triflate 810[691-693] or sulfonates using dppp or dppf as a ligand[694]. Aryl tetrazoyl ether 811 is cleaved with formic acid using Pd on carbon as a catalyst[695]. [Pg.248]

Dienes and allylarcncs can be prepared by the Pd-catalyzcd coupling of allylic compounds with hard carbon nucleophiles derived from alkenyl and aryl compounds of main group metals. Allylic compounds with various leaving groups can be used. Some of them are unreactive with soft nucleophiles, but... [Pg.345]

Several types of Pd-catalyzed or -promoted reactions of conjugated dienes via TT-allylpalladium complexes are known. The Pd(II)-promoted oxidative difunctionalization reactions of conjugated dienes with various nucleophiles is treated in Chapter 3, Section 4, and Pd(0)-catalyzed addition reactions of conjugated dienes to aryl and alkenyl halides in this chapter. Section 1.1.1. Other Pd(0)-catalyzed reactions of conjugated dienes are treated in this section. [Pg.422]

A large number of pyridazines are synthetically available from [44-2] cycloaddition reactions. In one general method, azo or diazo compounds are used as dienophiles, and a second approach is based on the reaction between 1,2,4,5-tetrazines and various unsaturated compounds. The most useful azo dienophile is a dialkyl azodicarboxylate which reacts with appropriate dienes to give reduced pyridazines and cinnolines (Scheme 89). With highly substituted dienes the normal cycloaddition reaction is prevented, and, if the ethylenic group in styrenes is substituted with aryl groups, indoles are formed preferentially. The cycloadduct with 2,3-pentadienal acetal is a tetrahydropyridazine derivative which has been used for the preparation of 2,5-diamino-2,5-dideoxyribose (80LA1307). [Pg.48]

The groups at the termini of the 1,4-pentadiene system also affect the efficiency and direction of the the di-7c-methane reaction. The general trend is that cyclization oceurs at the diene terminus that best stabilizes radical character. Thus, a terminus substituted with aryl groups will cyclize in preference to an unsubstituted or alkyl-substituted terminus ... [Pg.778]

The above cycloaddition process consists of two separate [3-1-2] cycloaddition steps and represents a 1,3-2,4 addition of a multiple bond system to a hetero-1,3-diene [7S7]. The structure ot the azomethine imine intermediate has been proved unequivocally by X-ray analysis [195] Ethylene [194], acetylene [/iS2] . many alkyl- and aryl- as well sgemmal dialkyl- and diaryl-substituted alkenes [196,197, 198, 199], dienes [200], and alkynes [182, 201], certain cyclic alkenes [198, 199,... [Pg.865]


See other pages where Dienes arylation is mentioned: [Pg.851]    [Pg.373]    [Pg.521]    [Pg.373]    [Pg.62]    [Pg.31]    [Pg.167]    [Pg.851]    [Pg.373]    [Pg.521]    [Pg.373]    [Pg.62]    [Pg.31]    [Pg.167]    [Pg.183]    [Pg.274]    [Pg.135]    [Pg.164]    [Pg.166]    [Pg.210]    [Pg.213]    [Pg.215]    [Pg.227]    [Pg.240]    [Pg.250]    [Pg.350]    [Pg.315]    [Pg.181]    [Pg.254]    [Pg.238]    [Pg.141]    [Pg.170]    [Pg.130]    [Pg.566]   


SEARCH



1.3- Dienes aryl-substituted

2-Aryl-1,3-dienes

2-Aryl-1,3-dienes

Aryl-diene bonds

Dienes 4-aryl-2-silyl

Imines diene catalyzed arylation

Rhodium Diene Catalyzed Arylation of Imines

Rhodium complexes with dienes, arylation

© 2024 chempedia.info