Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl-diene bonds

Reports on the synthesis of diene complexes using Fe2(CO)9 are more common. Reaction of 2-phenylsulfonyl-1,3-cyclohexadiene with 2equiv. of Fe2(GO)9 in refluxing ether formed the [l-(phenylsulfonyl)-l,3-cyclohexa-diene]iron(0)tricarbonyl isomer 26. The reaction is catalyzed by 1-aza-1,3-butadiene. In a separate study, 1-aza-1,3-butadienes were shown to effect a quantitative catalytic complexation of cyclohexadienes with Fe2(GO)9. Activities are greatly enhanced in the presence of aryl rings bonded to nitrogen. [Pg.142]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

I.l.IJ Reactions nitlr 1,2-, 1.3-. ami 1.4-dienes. The reaction of conjugated dienes with aryl and alkenyl halides can be explained by the following mechanism. Insertion of a conjugated 1.3-diene into an aryl or alkenylpalladium bond gives the T-allvlpalladium complex 243 as an intermediate, which reacts further... [Pg.163]

The above cycloaddition process consists of two separate [3-1-2] cycloaddition steps and represents a 1,3-2,4 addition of a multiple bond system to a hetero-1,3-diene [7S7]. The structure ot the azomethine imine intermediate has been proved unequivocally by X-ray analysis [195] Ethylene [194], acetylene [/iS2] . many alkyl- and aryl- as well sgemmal dialkyl- and diaryl-substituted alkenes [196,197, 198, 199], dienes [200], and alkynes [182, 201], certain cyclic alkenes [198, 199,... [Pg.865]

Electron-deficient 1,3-dienes are known to react when heated with metho-xy(aryl)- or methoxy(alkyl)carbene complexes to afford vinylcyclopropane derivatives with high regioselectivity and diastereoselectivity [8a, 24]. Cyclo-propanation of the double bond not bearing the acceptor functional group and... [Pg.66]

The reaction of 1,3-diamino-1,3-dienes with aryl or a,/J-disubstituted alkenylcarbene complexes leads to the formation of formal [4S+1C] cyclopen-tenones [25a] (Scheme 35). In the case of alkenylcarbene complexes, the substitution of the double bond of the complex in both a- and /J-carbons seems to play a fundamental role as reactions performed in the same conditions but using alkenylcarbene complexes with other substitution patterns leads to compounds of a different nature ([4+3], [4+2] and [2+1] cycloadducts). [Pg.85]

The selectivity for two-alkyne annulation can be increased by involving an intramolecular tethering of the carbene complex to both alkynes. This was accomplished by the synthesis of aryl-diynecarbene complexes 115 and 116 from the triynylcarbene complexes 113 and 114, respectively, and Danishefsky s diene in a Diels-Alder reaction [70a]. The diene adds chemoselectively to the triple bond next to the electrophilic carbene carbon. The thermally induced two-alkyne annulation of the complexes 115 and 116 was performed in benzene and yielded the steroid ring systems 117 and 118 (Scheme 51). This tandem Diels-Alder/two-alkyne annulation, which could also be applied in a one-pot procedure, offers new strategies for steroid synthesis in the class O—>ABCD. [Pg.149]

The sterically unbiased dienes, 5,5-diarylcyclopentadienes 90, wherein one of the aryl groups is substituted with NO, Cl and NCCHj), were designed and synthesized by Halterman et al. [163] Diels-Alder cycloaddition with dimethyl acetylenedicarbo-xylate at reflux (81 °C) was studied syn addition (with respect to the substituted benzene) was favored in the case of the nitro group (90a, X = NO ) (syrr.anti = 68 32), whereas anti addition (with respect to the substituted benzene) is favored in the case of dimethylamino group (90b, X = N(CH3)2) (syn anti = 38 62). The facial preference is consistent with those observed in the hydride reduction of the relevant 2,2-diaryl-cyclopentanones 8 with sodium borohydride, and in dihydroxylation of 3,3-diarylcy-clopentenes 43 with osmium trioxide. In the present system, the interaction of the diene n orbital with the o bonds at the (3 positions (at the 5 position) is symmetry-forbidden. Thus, the major product results from approach of the dienophile from the face opposite the better n electron donor at the (3 positions, in a similar manner to spiro conjugation. Unsymmetrization of the diene % orbitals is inherent in 90, and this is consistent with the observed facial selectivities (91 for 90a 92 for 90b). [Pg.166]

Some remarks concerning the scope of the cobalt chelate catalysts 207 seem appropriate. Terminal double bonds in conjugation with vinyl, aryl and alkoxy-carbonyl groups are cyclopropanated selectively. No such reaction occurs with alkyl-substituted and cyclic olefins, cyclic and sterically hindered acyclic 1,3-dienes, vinyl ethers, allenes and phenylacetylene95). The cyclopropanation of electron-poor alkenes such as acrylonitrile and ethyl acrylate (optical yield in the presence of 207a r 33%) with ethyl diazoacetate deserve notice, as these components usually... [Pg.165]

Nickel-bpy and nickel-pyridine catalytic systems have been applied to numerous electroreductive reactions,202 such as synthesis of ketones by heterocoupling of acyl and benzyl halides,210,213 addition of aryl bromides to activated alkenes,212,214 synthesis of conjugated dienes, unsaturated esters, ketones, and nitriles by homo- and cross-coupling involving alkenyl halides,215 reductive polymerization of aromatic and heteroaromatic dibromides,216-221 or cleavage of the C-0 bond in allyl ethers.222... [Pg.486]

Aryl- and alkylsulfonyl radicals have been generated from the corresponding iodides and added to, e.g., propadiene (la), enantiomerically enriched (P)-(+)-propa-2,3-diene [(P)-(lc)] and (P)-(-)-cyclonona-l,2-diene [(P)-(lk)] [47]. Diaddition of sulfo-nyl radicals may compete considerably with the monoaddition [48,49]. Also, products of diiodination have been purified from likewise obtained reaction mixtures, which points to a more complex reactivity pattern of these substrates towards cumulated Jt-bonds. An analysis of regioselectivities of arylsulfonyl radical addition to allenes is in agreement with the familiar trend that a-addition occurs in propadiene (la), whereas alkyl-substitution at the cumulated Jt-bond is associated with a marked increase in formation of /3-addition products (Scheme 11.7). [Pg.708]

The proposed mechanism involves the usual oxidative addition of the aryl halide to the Pd(0) complex affording a Pd(II) intermediate (Ar-Pd-Hal), subsequent coordination of allene 8 and migratory insertion of the allene into the Pd-C bond to form the jt-allylpalladium(II) species 123. A remarkable C-C bond cleavage of 123 leads by decarbopalladation to 1,3-diene 120 and a-hydroxyalkylpalladium species 124. /8-H elimination of 124 affords aldehyde 121 and the H-Pd-Hal species, which delivers Pd(0) again by reaction with base (Scheme 14.29). The originally expected cyclization of intermediate 123 by employment of the internal nucleophilic hydroxyl group to form a pyran derivative 122 was observed in a single case only (Scheme 14.29). [Pg.867]

Amino-5-aryl-l,3,4-thiadiazole was treated with thionyl chloride in dry benzene to yield the N-sulfinylamine (93) an unstable compound, characterized by NMR and further derivatization. The sulfinylamine moiety caused an upheld shift on C(2) (4 6 ppm) comparable to a carbonyl or sulfonyl group, indicating the double-bond character of the N—S bond. Reaction of (93) with 2,3-dimethylbuta-1,3-diene yielded (94) via thermal cycloaddition <89JCS(P2)i855>. [Pg.394]

In the preceding cyclization, one concern is the behavior of intermediate 24 if its benzyl cation is replaced with a tertiary cation to avoid forming a tertiary carbon, the 1,2-aryl migration of this intermediate would be unlikely to occur. When this cyclization was extended to 2,2-dimethyl(o-ethynyl)styrene 26, the 2-alkenyl-lH-indene product 28 [16] was obtained in 76% yield, as depicted in Scheme 6.14. In this transformation, the alkenyl double bond of the 3,5-dien-l-ynes is cleaved and a... [Pg.200]

Reaction of l-azirine-3-methylaciylates (155) with imidazoles and pyrazoles under mild conditions results in the formation of 2-aza-1,3-dienes (156), which are useful as dienes in hetero Diels-Alder reactions with electron-deficient dienophiles <99JOC49>. When the related methyl 2-aryl-2ff-azirine-3-carboxylate (157) was used as fee substrate, reaction with an amine induced a ting opening by addition of the amino group onto fee C=N bond followed by cleavage to provide enediamine 158 <99JCS(P1)1305>. [Pg.73]

The scope and limitations of the Lewis acid-catalyzed additions of alkyl chlorides to carbon-carbon double bonds were studied.51 Since Lewis acid systems are well-known initiators in carbocationic polymerizations of alkenes, the question arises as to what factors govern the two transformations. The prediction was that alkylation products are expected if the starting halides dissociate more rapidly than the addition products.55 In other words, addition is expected if the initial carbocation is better stabilized than the one formed from the dissociation of the addition product. This has been verified for the alkylation of a range of alkyl-and aryl-substituted alkenes and dienes with alkyl and aralkyl halides. Steric effects, however, must also be taken into account in certain cases, such as in the reactions of trityl chloride.51... [Pg.227]


See other pages where Aryl-diene bonds is mentioned: [Pg.504]    [Pg.504]    [Pg.849]    [Pg.446]    [Pg.405]    [Pg.407]    [Pg.17]    [Pg.57]    [Pg.274]    [Pg.181]    [Pg.170]    [Pg.130]    [Pg.77]    [Pg.1029]    [Pg.723]    [Pg.221]    [Pg.903]    [Pg.251]    [Pg.253]    [Pg.296]    [Pg.606]    [Pg.305]    [Pg.207]    [Pg.507]    [Pg.122]    [Pg.257]    [Pg.693]    [Pg.170]    [Pg.22]    [Pg.801]    [Pg.19]    [Pg.40]   
See also in sourсe #XX -- [ Pg.504 ]




SEARCH



2-Aryl-1,3-dienes

Aryl Bonds

Bonding aryls

Diene bonding

Dienes arylation

© 2024 chempedia.info