Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions diastereoselective synthesis

The chiral copper reagent 24 is an effective catalyst not only for intermolecular, hut also for intramolecular Diels-Alder reactions, as shown in the following schemes (Scheme 1.41, 1,42, 1.43). Synthetically useful octalin and decalin skeletons were synthesized in high enantio- and diastereoselectivity. The synthetic utility of this intramolecular Diels-Alder reaction has been demonstrated hy a short total synthesis of isopulo upone [23, 33d]. [Pg.30]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

This route provides a convenient method for synthesizing deltacyclenes 89 which have been proven to be useful in the synthesis of highly strained unnatural products of theoretical interest [88]. Diels-Alder reactions of norbornadiene (88) have been successfully activated by a nickel catalyst [89] (Scheme 3.17). Amarked influence of the catalyst on the endo-exo diastereoselectivity has been observed. [Pg.127]

The synthesis of chaparrinone and other quassinoids (naturally occurring substances with antileukemic activity) is another striking example [16a-c]. The key step of synthesis was the Diels-Alder reaction between the a,/l-unsaturated ketoaldehyde 1 (Scheme 6.1) with ethyl 4-methyl-3,5-hexadienoate 2 (R = Et). In benzene, the exo adduct is prevalent but it does not have the desired stereochemistry at C-14. In water, the reaction rate nearly doubles and both the reaction yield and the endo adduct increase considerably. By using the diene acid 2 (R = H) the reaction in water is 10 times faster than in organic solvent and the diastereoselectivity and the yield are satisfactory. The best result was obtained with diene sodium carboxylate 2 (R = Na) when the reaction is conducted 2m in diene the reaction is complete in 5h and the endo adduct is 75% of the diaster-eoisomeric reaction mixture. [Pg.255]

The optically active a-sulfinyl vinylphosphonate 122 prepared in two different ways (Scheme 38) is an interesting reagent for asymmetric synthesis [80]. This substrate is an asymmetric dienophile and Michael acceptor [80a]. In the Diels-Alder reaction with cyclopentadiene leading to 123, the endo/exo selectivity and the asymmetry induced by the sulfinyl group have been examined in various experimental conditions. The influence of Lewis acid catalysts (which also increase the dienophilic reactivity) appears to be important. The 1,4-addition of ethanethiol gives 124 with a moderate diastereoselectivity. [Pg.187]

Waldmann used (R) and (5>aminoacid methyl esters and chiral amines as chiral auxiliaries in analogous aza-Diels-Alder reactions with cyclodienes.111 The diastereoselectivity of these reactions ranged from moderate to excellent and the open-chain dienes reacted similarly. Recently, the aza-Diels-Alder reaction was used by Waldmann in the asymmetric synthesis of highly functionalized tetracyclic indole derivatives (Eq. 12.45), which is useful for the synthesis of yohimbine- and reserpine-type alkaloids.112... [Pg.402]

A one-pot, four-component process involving the in situ formation of an azadiene followed by an intermolecular or intramolecular Diels-Alder reaction for the synthesis of highly functionalized piperidone scaffolds has been reported [81]. The compounds were obtained in good yields and diastereoselectivities (Figure 5). [Pg.418]

The hetero-Diels-Alder reaction of activated butadienes with carbonyl compounds is a convenient method for the preparation of precursors of sugars. Up to three chiral centers are created simultaneously. The high-pressure [4 + 2]cycloaddition of l-methoxybuta-1,3-diene 32 to N-mono- and N,N-diprotected alaninals was investigated [42-45]. The Eu(fod)3-mediated reaction of 32 with alaninal 25 gave a mixture of four diastereoisomers, which was then subjected to acidic isomerization, leading to the thermodynamically more stable pair of adducts syn-33 and anti-34, with predominance of the latter isomer (Scheme 12). The N-monoprotected alaninals reacted with a moderate ryn-diastereoselectivity. This method was used in the synthesis of purpurosamines (see Sec. DI.C). [Pg.600]

The chiral organocopper compound (186) adds diastereoselectively to 2-methyl-2-cyclopentenone, allowing the preparation of optically active steroid CD-ring building blocks (Scheme 68).202-204 A related method was applied to a synthesis of the steroid skeleton via an intramolecular (transannular) Diels-Alder reaction of a macrocyclic precursor.203 Chiral acetone anion equivalents based on copper azaeno-lates derived from acetone imines were shown to add to cyclic enones with good selectivity (60-80% ee, after hydrolysis).206-208 Even better ee values are obtained with the mixed zincate prepared from (187) and dimethylzinc (Scheme 69). Other highly diastereoselective but synthetically less important 1,4-additions of chiral cuprates to prochiral enones were reported.209-210... [Pg.227]

METHOXYCARBONYL-1,1,6-TRIMETHYL-1,4,4a,5,6,7,8,8a-OCTAHYDRO-2,3-BENZOPYRONE, an intramolecular Diels-Alder reaction is responsible for the diastereoselectivity. The stereoselective 1,4-functionalization of 1,3-dienes is exemplified by a two-step process leading to cis- and trans-1-ACETOXY-4-(DICARBOMETHOXYMETHYL)-2-CYCLOHEXENE. The effectiveness of a silyl hydride in providing a means for erythro-directed reduction of a p-keto amide is applied in a route to ERYTHRO-1 -(3-HYDROXY-2-METHYL-3-PHENYL-PROPANOYLJPIPERIDINE. This is followed by an asymmetric synthesis based on a chiral bicyclic lactam leading to (R)-4-ETHYL-4-ALLYL-2-CYCLOHEXEN-1-ONE. The stereoselectivity with which acetoxy migration can operate to an adjacent radical center is reflected in the one-step reaction that gives rise to 1,3,4,6-TETRA-O-ACETYL-2-DEOXY-a-D-GLUCOPYRANOSE. [Pg.333]

The chiral boron complex prepared in situ from chiral binaphthol and B(OPh)3 is utilized for the asymmetric aza-Diels-Alder reaction of Danishefsky s diene and imines [67] (Eq. 8A.43). Although the asymmetric reaction of prochiral imine affords products with up to 90% ee, the double asymmetric induction with chiral imine by using oc-benzylamine as a chiral auxiliary has achieved almost complete diastereoselectivity for both aliphatic and aromatic aldimines. This method has been successfully applied to the efficient asymmetric synthesis of anabasine and coniine of piperidine alkaloides. [Pg.486]

The reaction of a,/3-unsaturated benzodioxepin 116 with fert-butyllithium in THF at — 78 °C produced a lithium alkoxide, which was trapped in situ with 2,2,2-trifluoroacrylate to give acryloyl (lZ,3T)-dienyl ether 117 with high diastereoselectivity (Scheme 28) <20050BC1308>. The procedure has found application in the synthesis of carbo-sugars via Diels-Alder reaction. [Pg.342]

Subsequently, Posner published the completely regioselective and highly stereoselective cyclo additions of racemic 3-(p-tolylsulfinyl)-2-pyrone (141) (Scheme 70) with 1,1-dimethoxyethylene [133],vinylether,and vinylthioethers [134]. With the first dienophile, the best diastereoselectivity (an 88 12 ratio of the two endo-adducts) was achieved at room temperature in toluene or hexane as the solvent (48 h). A 10 1 endo/exo mixture of cycloadducts was obtained with vinyl-ether in the presence of ZnBr2 as the catalyst, whereas a total endo selectivity was observed in reactions of 141 with vinylthioethers [134] conducted under high pressures. The bridged bicyclic lactone cycloadducts 142 have been used as versatile synthons in the synthesis of shikimic acid derivatives. Although enantio-merically pure samples of compound 141 could be obtained [134] it was not used as a starting material for asymmetric Diels-Alder reactions (the low yield of (S)-141 precluded this). [Pg.76]

Clearly, an important feature will be the selectivity of these reactions. In this respect, the control of endo- and exo-selectivity using different Lewis acids, the induced diastereoselectivity with chiral heterobutadienes as well as chiral heterodienophiles and finally the use of chiral Lewis acids for the enantioselec-tive synthesis will be discussed. In recent time some attention has been paid to hetero Diels-Alder reactions in aqueous solutions and in the presence of inor-... [Pg.5]

The more recent work on this area deals predominantly with the asymmetric induction in aza Diels-Alder reactions in order to develop a novel powerful tool for the stereoselective synthesis of biologically active compounds. Thus, Wald-mann et al. demonstrated the utility of chiral imines derived from enantiopure amino acids by obtaining the cycloadduct 3-3 in very good diastereoselectivity from imine 3-1 and Brassard s diene 3-2 (Fig. 3-1) [181]. [Pg.46]

The advanced state of the art in carbohydrate synthesis basing on hetero Diels-Alder reactions of 1-oxa-l,3-butadienes has opened an access to enan-tiopure sugar derivatives. Thus, our group found the cycloaddition of the chiral heterodiene 7-1 and the electron-rich alkene 7-2 under the influence of Me2AlCl to give the dihydropyran 7-3 in excellent endo selectivity (endo/exo >50 1) and as well excellent induced diastereoselectivity (54 1) [478]. A short sequence involving one simple recrystallisation then led to the ethyl-/)-D-mannopyrano-side 7-4 in enantiomerically pure form (Fig. 7-1). [Pg.84]


See other pages where Diels-Alder reactions diastereoselective synthesis is mentioned: [Pg.173]    [Pg.173]    [Pg.27]    [Pg.151]    [Pg.56]    [Pg.277]    [Pg.216]    [Pg.217]    [Pg.252]    [Pg.402]    [Pg.1048]    [Pg.238]    [Pg.117]    [Pg.450]    [Pg.19]    [Pg.65]    [Pg.200]    [Pg.400]    [Pg.374]    [Pg.369]    [Pg.336]    [Pg.43]    [Pg.56]    [Pg.297]    [Pg.286]    [Pg.4]    [Pg.49]   
See also in sourсe #XX -- [ Pg.591 ]




SEARCH



Diastereoselective reaction

Diastereoselective reactions Diastereoselectivity

Diastereoselective synthesis

Diastereoselectivity reaction

Diels diastereoselective

Diels-Alder reaction diastereoselectivity

Diels-Alder synthesis

Synthesis Diels-Alder reaction

Synthesis diastereoselectivity

© 2024 chempedia.info