Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions base-catalyzed

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Development of base-catalyzed Diels-Alder reaction of 3-hydroxy-2-pyrone and its application to synthesis of bioactive compounds 99YGK84. [Pg.225]

Asymmetric Diels-Alder reactions using a dienophile containing a chiral auxiliary were developed more than 20 years ago. Although the auxiliary-based Diels-Alder reaction is still important, it has two drawbacks - additional steps are necessary, first to introduce the chiral auxiliary into the starting material, and then to remove it after the reaction. At least an equimolar amount of the chiral auxiliary is, moreover, necessary. After the discovery that Lewis acids catalyze the Diels-Alder reaction, the introduction of chirality into such catalysts has been investigated. The Diels-Alder reaction utilizing a chiral Lewis acid is truly a practical synthetic transformation, not only because the products obtained are synthetically useful, but also because a catalytic amount of the chiral component can, in theory, produce a huge amount of the chiral product. [Pg.4]

The Asymmetric Catalytic Diels-Alder Reaction Catalyzed by Base... [Pg.46]

The discovery that Lewis acids can promote Diels-Alder reactions has become a powerful tool in synthetic organic chemistry. Yates and Eaton [4] first reported the remarkable acceleration of the reactions of anthracene with maleic anhydride, 1,4-benzoquinone and dimethyl fumarate catalyzed by aluminum chloride. The presence of the Lewis-acid catalyst allows the cycloadditions to be carried out under mild conditions, reactions with low reactive dienes and dienophiles are made possible, and the stereoselectivity, regioselectivity and site selectivity of the cycloaddition reaction can be modified [5]. Consequently, increasing attention has been given to these catalysts in order to develop new regio- and stereoselective synthetic routes based on the Diels-Alder reaction. [Pg.99]

Several aluminum- and titanium-based compounds have been supported on silica and alumina [53]. Although silica and alumina themselves catalyze cycloaddition reactions, their catalytic activity is greatly increased when they complex a Lewis acid. Some of these catalysts are among the most active described to date for heterogeneous catalysis of the Diels-Alder reactions of carbonyl-containing dienophiles. The Si02-Et2AlCl catalyst is the most efficient and can be... [Pg.115]

The enantioselection depends greatly on the nature of the R2 group at the boron atom, and the ee values were as high as 97 %. High enantioselectivity was observed in the synthesis of 4-dihydropyranones, based on the Diels-Alder reactions of aldehydes 74 and Danishefsky s diene, catalyzed by a BINOL-Ti(0-i-Pr)4-derived catalyst [75] (Equation 3.23). [Pg.123]

Inverse electron-demand Diels-Alder reaction of (E)-2-oxo-l-phenylsulfo-nyl-3-alkenes 81 with enolethers, catalyzed by a chiral titanium-based catalyst, afforded substituted dihydro pyranes (Equation 3.27) in excellent yields and with moderate to high levels of enantioselection [81]. The enantioselectivity is dependent on the bulkiness of the Ri group of the dienophile, and the best result was obtained when Ri was an isopropyl group. Better reaction yields and enantioselectivity [82, 83] were attained in the synthesis of substituted chiral pyranes by cycloaddition of heterodienes 82 with cyclic and acyclic enolethers, catalyzed by C2-symmetric chiral Cu(II) complexes 83 (Scheme 3.16). [Pg.124]

Base-catalyzed Diels-Alder reactions are rare (Section 1.4). A recent example is the reaction of 3-hydroxy-2-pyrone (145) with chiral N-acryloyl oxazolidones 146 that uses cinchona alkaloid as an optically active base catalyst [97] (Table 4.25). Only endo adducts were obtained with the more reactive dienophile 146 (R = H), the best diastereoselectivity and yields being obtained with an i-Pr0H/H20 ratio of 95 5. The reaction of 146 (R = Me) is very slow, and a good adduct yield was only obtained when the reaction was carried out in bulky alcohols such as t-amyl alcohol and t-butanol. [Pg.190]

Okamura H., Iwagawa M. and Nakatani M. Development of Base Catalyzed Diels-Alder Reaction of 3-Hydroxy-2-Pyrone and Application to Synthesis of Biologically Active Compounds Org. Chem. Japan 1999 57 84... [Pg.306]

This procedure describes the preparation and application of an effective chiral catalyst for the enantioselective Diels-Alder reaction.11 The catalyst is derived from optically active 1,2-diphenylethylenediamine, the preparation of which (either antipode) was described in the preceding procedure. The aluminum-based Lewis acid also catalyzes the cycloaddition of crotonoyl oxazolidinones with cyclopentadiene,11 and acryloyl derivatives with benzyloxymethylene-cyclopentadiene. The latter reaction leads to optically pure intermediates for synthesis of prostaglandins.11... [Pg.19]

In 2002, Leadbeater and Torenius reported the base-catalyzed Michael addition of methyl acrylate to imidazole using ionic liquid-doped toluene as a reaction medium (Scheme 6.133 a) [190], A 75% product yield was obtained after 5 min of microwave irradiation at 200 °C employing equimolar amounts of Michael acceptor/donor and triethylamine base. As for the Diels-Alder reaction studied by the same group (see Scheme 6.91), l-(2-propyl)-3-methylimidazolium hexafluorophosphate (pmimPF6) was the ionic liquid utilized (see Table 4.3). Related microwave-promoted Michael additions studied by Jennings and coworkers involving indoles as heterocyclic amines are shown in Schemes 6.133 b [230] and 6.133 c [268], Here, either lithium bis(trimethylsilyl)amide (LiHMDS) or potassium tert-butoxide (KOtBu) was em-... [Pg.195]

The first examples of transition metal-catalyzed [5 + 2]-cycloadditions between vinylcyclopropanes (VCPs) and 7r-systems were reported in 1995 by Wender and co-workers.10 This [5 + 2]-reaction was based conceptually on the Diels-Alder reaction, replacing the four-carbon, four-7r-electron diene with a five-carbon, four-electron VCP (Scheme 1). Although the [5 + 2]-reaction of VCPs and 7r-systems can be thought of as a homolog of the Diels-Alder [4 +21-reaction, the kinetic stability of VCPs (activation barrier for the thermal isomerization of VCP to cyclopentene has been reported as 51.7 kcal mol-1)11 makes the thermal [5 + 2]-reactions involving VCPs and 7r-systems very difficult to achieve. A report of a thermal [5 + 2]-cycloaddition between maleic anhydride and a VCP has been published,12 but this reaction has not been reproduced by others.13 14 Based on the metal-catalyzed isomerization of VCPs to cyclopentenes and dienes,15-20 Wender and co-workers hypothesized that a metal might be used to convert a VCP to a metallocyclohexene which in turn might be trapped by a 7r-system to produce a [5 + 2]-cycloadduct. Based on its previous effectiveness in catalyzed [4 + 2]-21 and [4 + 4]-cycloadditions (Section 10.13.2.4), nickel(0) was initially selected to explore the potential of VCPs as four-electron, five-carbon components in [5 + 2]-cycloadditions. [Pg.605]

As mentioned already in CHEC-II(1996) <1996CHEC-II(8)411>, some tetrazolo[l,5- ]pyridines can react with their C(5)-C(6) and C(7)-C(8) double bonds as dienophiles in Diels-Alder reactions. A novel study again supported this recognition Goumont et al. described that 6,8-dinitrotetrazolo[l,5- ]pyridine 11 easily react with some 2,3-disub-stituted butadienes to give bis-cycloadducts 48 <2002T3249>. These products when treated with potassium /-butoxide undergo base catalyzed elimination of nitric acid followed by oxidation reaction to yield the fully aromatic tetracyclic compounds 49 (Scheme 14). [Pg.652]

A formal transfer of a furan ring was achieved by the tandem intramolecular Diels-Alder reaction and base-catalyzed ring-opening of the adduct [136]. [Pg.780]

Okamura and coworkers151 studied the base catalyzed Diels-Alder reactions between 3-hydroxy-2-pyrone (224) and chiral l,3-oxazolidin-2-one based acrylate derivatives. Catalysis of the reaction between 224 and 225 by triethylamine gave fair to good de values, somewhat dependent on the solvent system used (equation 63, Table 7). Addition of 5% of water to the solvent isopropanol, for example, increased the de of the endo adduct 226 substantially. When the amount of water was increased, however, the triethylamine catalyzed reaction became less endo and diastereofacially selective, a small amount of exo 227 being obtained. Replacing triethylamine by the chiral base cinchonidine also improved the de, but now independently of the solvent system used. [Pg.382]

Carbohydrates have found widespread use as chiral auxiliaries in asymmetric Diels-Al-der reactions156. A recent example is a study conducted by Ferreira and colleagues157 who used carbohydrate based chiral auxiliaries in the Lewis acid catalyzed Diels-Alder reactions of their acrylate esters 235 with cyclopentadiene (equation 66). Some representative results of their findings, including the ratios of products 236 and 237, have been summarized in Table 9. The formation of 236 as the main product when diethylaluminum chloride was used in dichloromethane (entry 3) was considered to be the result of an equilibrium between a bidentate and monodentate catalyst-dienophile complex. The bidentate complex would, upon attack by the diene, lead to 236, whereas the monodentate complex would afford 236 and 237 in approximately equal amounts. The reversal of selectivity on changing the solvent from dichloromethane to toluene (entry 2 vs 3) remained unexplained by the authors. [Pg.384]

Oppolzer and colleagues performed pioneering work on the application of chiral sultam based dienophiles in asymmetric Diels-Alder reactions. The bomanesultam based dienophiles provided excellent de values in the Lewis acid mediated Diels-Alder reactions with a wide variety of dienes179. The efficiency of the simpler toluene-2,a-sultam based dienophiles was also studied180. Chiral auxiliary 282 proved superior to 283 and 284 in the aluminum Lewis acid catalyzed Diels-Alder reactions of its A-acryloyl derivative with cyclopentadiene, 1,3-butadiene and isoprene, affording the adducts with >90% de. [Pg.395]

Itsuno et al. demonstrated that the Diels-Alder reaction can be catalyzed by use of polystyrene-based polymers (35) which are cross-linked with ohgo(oxyethylene) chains (36) and functionahzed with oxazaborohdinone units (Scheme 4.21) [112]. [Pg.223]

Asymmetric Diels-Alder reactions have also been achieved in the presence of poly(ethylene glycol)-supported chiral imidazohdin-4-one [113] and copper-loaded silica-grafted bis(oxazolines) [114]. Polymer-bound, camphor-based polysiloxane-fixed metal 1,3-diketonates (chirasil-metals) (37) have proven to catalyze the hetero Diels-Alder reaction of benzaldehyde and Danishefsky s diene. Best catalysts were obtained when oxovanadium(lV) and europium(III) where employed as coordinating metals. Despite excellent chemical yields the resulting pyran-4-ones were reported to be formed with only moderate stereoselectivity (Scheme 4.22). The polymeric catalysts are soluble in hexane and could be precipitated by addition of methanol. Interestingly, the polymeric oxovanadium(III)-catalysts invoke opposite enantioselectivities compared with their monomeric counterparts [115]. [Pg.223]

Scheme 60 Ferrocene based salt 58 catalyzed Diels-Alder reaction... Scheme 60 Ferrocene based salt 58 catalyzed Diels-Alder reaction...
Among the various methods available for the activation of dienes in a Diels-Alder reaction, Lewis acid catalysis is certainly the most important. Our group has reported the first example of a Diels-Alder reaction catalyzed by Bi(0Tf)3xH20 (Scheme 12) [72], which showed high catalytic activity and regioselectivity in comparison to other Sc-, Ti-, Sm-, or Yb-metal-based Lewis acids, well-known for their efficient catalytic activity. Bi(OTf)3 proved to be slightly more endo-selective than Sc(OTf)3. Further, no polymerisation of dienes or dienophiles was observed. Bi(OTf)3 was also found to be superior to SnCI4 and Cu(BF4)2. [Pg.151]

Section A.5). Indeed, three enantiomeric pairs of 2-oxazolidinones have been commercially available since 1991. Enantiomerically pure 4-phenyl-2-oxazolidinone has likewise been prepared from / -aminobenzeneethanol (phenylglycinol)64. Base-catalyzed acylation of the enantiomerically pure 2-oxazolidinones with an appropriate acyl chloride gives the desired 3-acyl-2-oxazolidinones 3, 6 and 9 which have been used extensively in highly diastereoselective reactions of various types such as alkylations, aldol reactions (see Section D.l.3.4.2.4), hydrox-ylations (see Section D.4.1), aminations (see Section D.7.1) and Diels-Alder reactions (see Section D. 1.6.1.6) alkylation giving products with induced chirality in the a-position. [Pg.884]

Diels-Alder reactions with p-quinones (6. 65 66). The orientation of Diels-Alder reactions of 6-meihoxy-l-vinyl-3,4-dihydronaphthalene (1) with p-quinones is subject to reversal by addition of BF, etherate (1.3 equivalent). Thus the thermal reaction with 2,6-dimethyl-/>-bcnzoquinone (2) results in exclusive formation of 3, whereas the catalyzed reaction leads predominately to the isomer 4. The adduct 3 is stable to base, but the syn, m-isomer 4 on treatment with NaX O, is converted to the more stable anti, frau.s-isomer 5. [Pg.52]

Diels-Alder reactions are thermal reactions requiring no catalysts (120). However, over the years both acid- and metal-based homogeneous or heterogeneous catalysts have been developed (121—127). Some catalysts used in Diels-Alder catalyzed reactions of butadiene are Fe(NO)2Cl—(CH3CH2)2A1C1, Pd[P(C H5)3]4, Cu(I) exchanged silica—alumina (128,129), large pore zeolites (130), and carbon molecular sieves. An electrochemical process has also been used to catalyze the self-condensation to vinylcyclohexene (131). When the asymmetric Ni catalyst (4) was used, specificity to the enantomeric (5)-4-vinylcyclohexene (132,133) was observed (26% enantiomeric excess). [Pg.344]


See other pages where Diels-Alder reactions base-catalyzed is mentioned: [Pg.212]    [Pg.250]    [Pg.183]    [Pg.216]    [Pg.141]    [Pg.1185]    [Pg.50]    [Pg.177]    [Pg.103]    [Pg.428]    [Pg.331]    [Pg.107]    [Pg.368]    [Pg.267]    [Pg.183]    [Pg.22]    [Pg.256]    [Pg.33]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Base catalyzed reactions

© 2024 chempedia.info