Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Normal electron-demand Diels-Alder reactions

This procedure describes the preparation and inverse electron demand (LUM0(jjene controlled/ Diels-Alder reaction of an electron-deficient diene. While extensive studies on the preparative utility of the normal (HOMOjjg controlled) Diels-Alder reaction have been detailed, few complementary studies on the preparative value of the inverse electron demand Diels-Alder reaction have been described. Table I details representative 3-carbomethoxy-2-pyrones which have been prepared by procedures similar to that described herein and Tables II and III detail their inverse electron demand Diels-Alder reactions with electron-rich dienophiles. [Pg.52]

Diels-Alder reactions of the type shown in Table 15.1, that is, Diels-Alder reactions between electron-poor dienophiles and electron-rich dienes, are referred to as Diels-Alder reactions with normal electron demand. The overwhelming majority of known Diels-Alder reactions exhibit such a normal electron demand. Typical dienophiles include acrolein, methyl vinyl ketone, acrylic acid esters, acrylonitrile, fumaric acid esters (irans-butenedioic... [Pg.661]

Thus, Ghosez et al. were successful in showing that A,iV-dimethyl hydrazones prepared from a,/3-unsaturated aldehydes react smoothly in normal electron demand Diels-Alder reactions with electron-deficient dienophiles [218, 219]. Most of the more recent applications of such 1-aza-l,3-butadienes are directed towards the synthesis of biologically active aromatic alkaloids and azaanthra-quinones [220-224] a current example is the preparation of eupomatidine alkaloids recently published by Kubo and his coworkers. The tricyclic adduct 3-19 resulting from cycloaddition of naphthoquinone 3-17 and hydrazone 3-18 was easily transformed to eupomatidine-2 3-20 (Fig. 3-6) [225]. [Pg.49]

Similarly to the homologous 1-oxa-1,3-butadienes, 1-thia-1,3-butadienes are known to be very suitable and reactive substrates for hetero Diels-Alder reactions. However, in contrast to the oxa-1,3-butadienes which in general act as electron-deficient component in such cycloadditions, thia-1,3-butadienes predominantly undergo normal electron demand Diels-Alder reactions with electron-deficient dienophiles. Nevertheless, also some reactions of thia-1,3-butadienes involving electron-rich dienophiles have been described [412,413], Thia-1,3-butadienes considerably tend to dimerize due to their high reactivity in hetero Diels-Alder reactions [414]. [Pg.76]

The thermal [4+2] Diels-Alder cycloaddition reaction can be classified into three processes the normal Diels-Alder reaction of electron-rich dienes with electron-deficient dienophiles (HOMOdiene-controlled), the neutral Diels-Alder reaction and the inverse electron-demand Diels-Alder reaction of electron-deficient dienes with electron-rich dienophiles (LUMOdiene-controlled). [Pg.42]

Heteroatomic dienophiles such as aldehydes and imines also participate in Diels-Alder reactions. Heteroatomic dienophiles have low-energy MOs, so they undergo normal electron-demand Diels-Alder reactions with electron-rich dienes. Singlet 02 ( 02, 0=0) also undergoes normal electron-demand Diels-Alder reactions. Atmospheric 02 is a triplet, best described as a 1,2-diradical ( 0-0 ),... [Pg.175]

The potential of reversing the diene/dienophile polarity of the normal Diels-Alder reaction was first discussed in the course of the early work on the [4 + 2] cycloaddition reaction Bachmann, W. E., and Deno, N. C. (1949). J. Am. Chem. Soc. 71, 3062. The first experimental demonstration of the inverse electron demand Diels-Alder reaction employed electron-deficient perfluoroalkyl-l,2,4,5-tetrazines Carboni, R. A., and Lindsey, R. V., Jr. (1959). J. Am. Chem. Soc. 81,4342. A subsequent study confirmed the [4 + 2] cycloaddition rate acceleration accompanying the complementary inverse electron demand diene/dienophile substituent effects Sauer, J., and Wiest, H. (1962). Angew. Chem. Int. Ed. Engl. 1, 269. [Pg.350]

As previously noted, the typical high temperatures and long reaction times required for the normal electron demand Diels-Alder reactions with electron-poor indoles have rendered such approaches less attractive for the synthesis of more sensitive and highly functionalized substrates in total synthesis. Recently, there have been a few reports on attempts to accelerate these cycloaddition processes. For example, Piettre and coworkers investigated the activation of the dienophilic indoles under high pressure [33]. Thermal Diels-Alder reactions of lV-tosyl-indole-3-car-boxaldehyde (65) with dienes 66a and 66b (195°C, sealed tube, 72 h) resulted in conversions of 67% and 25%, respectively (Scheme 18). By increasing the pressure for the above reactions to 16 kbar (48 h, 50°C), the corresponding cycloadditions with dienes 66a and 66b resulted in conversions of 93% and 86%, respectively. [Pg.337]

The Diels-Alder reaction is defined as a [4-1-2] cycloaddition between a conjugated diene and a substituted dienophile (alkene or alkyne) to form a (hetero-)cyclohexene system. Based on the electronic effects of the substituent on the diene and dienophile, Diels-Alder reactions can be classified as normal electron-demand (electron-rich diene reacts with electron-deficient dienophile) or inverse electron-demand (iEDDA, electron-deficient diene reacts with electron-rich dienophile) reactions (Scheme la). In a normal electron-demand Diels-Alder reaction, the electron-deficient dienophile, typically a Michael acceptor, is likely to be attacked by endogenous nucleophiles such as free amino and thiol groups in vivo. For this reason, the use of this reaction in bioorthogonal chemistry apphcations poses a challenge. [Pg.112]

Diels-Alder reactions can be divided into normal electron demand and inverse electron demand additions. This distinction is based on the way the rate of the reaction responds to the introduction of electron withdrawing and electron donating substituents. Normal electron demand Diels-Alder reactions are promoted by electron donating substituents on the diene and electron withdrawii substituents on the dienophile. In contrast, inverse electron demand reactions are accelerated by electron withdrawing substituents on the diene and electron donating ones on the dienophile. There also exists an intermediate class, the neutral Diels-Alder reaction, that is accelerated by both electron withdrawing and donating substituents. [Pg.4]

Figure 1.1. Orbital correlation diagram illustrating the distinction between normal electron demand (leftside) and inverse electron demand (right side) Diels-Alder reactions. Figure 1.1. Orbital correlation diagram illustrating the distinction between normal electron demand (leftside) and inverse electron demand (right side) Diels-Alder reactions.
Hydrogen bonding of water to the activating group of (for normal-electron demand Diels-Alder reactions) the dienophile constitutes the second important effect". Hydrogen bonds strengthen the electron-withdrawing capacity of this functionality and thereby decrease the HOMO-LUMO gap... [Pg.43]

The fact that good correlations are observed with d" rather than with a, is indicative of a strong infiuence of the substituent through a direct resonance interaction with a positive charge in the reacting system. The p-values are positive, which is expected for substituted dienophiles in a normal electron demand Diels-Alder reaction. Furthermore, the p-values do not exceed unity and are not significantly different from literature values reported for the uncatalysed reaction. It is tempting to... [Pg.55]

More complete interpretations of Diels-Alder regioselectivity have been developed. MO results can be analyzed from an electrostatic perspective by calculating potentials at the various atoms in the diene and dienophile. These results give a more quantitatively accurate estimate of the substituent effects. Diels-Alder regioselectivity can also be accounted for in terms of HSAB theory (see Section 1.2.3). The expectation would be that the most polarizable (softest) atoms would lead to bond formation and that regioselectivity would reflect the best mateh between the diene and dienophile termini. These ideas have been applied using 3-2IG computations. The results are in agreement with the ortho rule for normal-electron-demand Diels-Alder reactions. ... [Pg.645]

The FMOs of acrolein to the left in Fig. 8.2 are basically slightly perturbed butadiene orbitals, while the FMOs of protonated acrolein resemble those of an allyl cation mixed in with a lone-pair orbital on the oxygen atom (Fig. 8.2, right). Based on the FMOs of protonated acrolein, Houk et al. [2] argued that the predominant interaction in a normal electron-demand carbo-Diels-Alder reaction is between the dienophile LUMO and diene HOMO (Fig. 8.1, left). This interaction is greatly... [Pg.303]

The two transition states in Figs 8.5 and 8.6 correspond in principle to a metal-catalyzed carho-Diels-Alder reaction under normal electron-demand reaction conditions and a hetero-Diels-Alder reaction with inverse electron-demand of an en-one with an alkene. The calculations by Houk et al. [6] indicated that with the basis set used there were no significant difference in the reaction course. [Pg.307]

We are now able to understand the Lewis acid-catalyzed normal electron-demand carbo-Diels-Alder reaction from a theoretical point of view. The calculated influence of the Lewis acids on the reaction rate, regio- and stereoselectivity in an... [Pg.313]

The basic concept of activation in hetero-Diels-Alder reactions is to utilize the lone-pair electrons of the carbonyl and imine functionality for coordination to the Lewis acid. The coordination of the dienophile to the Lewis acid changes the FMOs of the dienophile and for the normal electron-demand reactions a decrease of the LUMO and HOMO energies is observed leading to a better interaction with... [Pg.314]

Normal electron-demand controlled hetero-Diels-Alder reactions... [Pg.314]

Normal Electron-demand Hetero-Diels-Alder Reactions... [Pg.315]

The simplest dienophile, ethene, is poorly reactive. Electron-withdrawing and electron-donating groups, on the carbon atom double bond, activate the double bond in normal and inverse electron-demand Diels-Alder reactions, respectively. [Pg.4]

Extensive studies by Gorman and Gassman have shown that an allyl cation can be a 27r-electron component in a normal electron-demand cationic Diels-Alder reaction and, since a carbocation is a very strong electron-withdrawing group, the allyl cation is a highly reactive dienophile [19a, 21]. [Pg.6]

Since the reactivity depends on the lowest HOMO-LUMO energy separation that can be achieved by the reacting partners, all the factors, steric and electronic, that lower the HOMO-LUMO distance increase the reaction rate and, as a consequence, allow the reactions to be carried out under mild conditions. Thus the normal electron-demand Diels-Alder reaction between 1,4-benzoquinone and 1,3-butadiene (Equation 2.2) proceeds at 35 °C almost quantitatively. [Pg.29]

The combination of thionation by Lawesson s reagent [98] of oxoenamino-ketones 96 with normal electron-demand Diels-Alder reaction of conjugated aldehydes allows a variety of thiopyrans 97 to be synthesized by a regio-selective and chemoselective one-pot methodology [99] (Equation 2.28). Thionation occurred at the more electrophilic ketonic carbonyl group. O O... [Pg.69]

In another aspect of the mechanism, the effects of electron-donating and electron-withdrawing substituents (p. 1065) indicate that the diene is behaving as a nucleophile and the dienophile as an electrophile. However, this can be reversed. Perchlorocyclopentadiene reacts better with cyclopentene than with maleic anhydride and not at all with tetracyanoethylene, though the latter is normally the most reactive dienophile known. It is apparent, then, that this diene is the electrophile in its Diels-Alder reactions. Reactions of this type are said to proceed with inverse electron demand ... [Pg.1067]

They reported that the DFT calculations of 114 at the B3LYP/6-31G level showed that the ji-HOMO lobes at the a-position are slightly greater for the syn-n-face than for the anti face. The deformation is well consistent with the prediction by the orbital mixing rule. However, the situation becomes the reverse for the Jt-LUMO lobes, which are slightly greater at the anti than the syn-n-face. They concluded that the iyn-Jt-facial selectivity of the normal-electron-demand Diels-Alder reactions... [Pg.215]

Terrier et al. have widely described Bfxs 4-nitro-substituted participating in a series of Diels-Alder processes. Bfx 4-nitro-substituted system could participate as diene, C = C - C = C system, or heterodiene, C = C - NO2 system, in an inverse electron demand reaction [62,63] or as dienophile, C = C or N = O systems, in a normal electron demand reaction [64-68]. Fxs have been reported as 1,3-dipole through the substructure C = - 0 reacting with... [Pg.274]


See other pages where Normal electron-demand Diels-Alder reactions is mentioned: [Pg.20]    [Pg.28]    [Pg.172]    [Pg.113]    [Pg.163]    [Pg.214]    [Pg.4]    [Pg.6]    [Pg.44]    [Pg.52]    [Pg.174]    [Pg.302]    [Pg.314]    [Pg.314]    [Pg.3]    [Pg.23]   
See also in sourсe #XX -- [ Pg.762 ]

See also in sourсe #XX -- [ Pg.899 ]




SEARCH



Demand electronics

Demanding reaction

Diels-Alder reaction demand

Electron-demand

Electronic demand

Normal electron-demand

Normal reactions

Normal-electron demand reactions

© 2024 chempedia.info