Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction menthol derivatives

The Diels-Alder reaction of simple alkoxy alkenylcarbene complexes leads to mixtures of endo and exo cycloadducts, with the endo isomer generally being the major one [96,97]. Asymmetric examples of endo Diels-Alder reactions have also been reported by the use of chiral auxiliaries both on the carbene complex and the diene. Thus, the reaction of cyclopentadiene with chiral alkenylcarbene complexes derived from (-)-menthol proceeds to afford a 4 1... [Pg.94]

Clive and coworkers have reported a total synthesis of calicheamicinone, the aglycon of the antitumor agent calicheamicin starting from the Diels-Alder reaction of methyl 3-nitro-propenoate with ketene acetal (Eq. 8.32).54 An asymmetric Diels-Alder reaction between ketene acetal presented in Eq. 8.32 and 3-nitropropenoate derived from (-)-8-phenyl-menthol affords the optically pure adduct, which can be converted into either enantiomer of calicheamicinone (Eq. 8.33).55... [Pg.247]

For acrylates, or type I reagents, applied in asymmetric Diels-Alder reactions, several chiral auxiliaries such as menthol derivatives, camphor derivatives,16,3 and oxazolidinones4 are available. Carbohydrate compounds have also been reported as chiral auxiliaries in a recent publication, although the stereoselectivity was not good.5 Here are examples in which asymmetric Diels-... [Pg.269]

In 1990, Choudary [139] reported that titanium-pillared montmorillonites modified with tartrates are very selective solid catalysts for the Sharpless epoxidation, as well as for the oxidation of aromatic sulfides [140], Unfortunately, this research has not been reproduced by other authors. Therefore, a more classical strategy to modify different metal oxides with histidine was used by Moriguchi et al. [141], The catalyst showed a modest e.s. for the solvolysis of activated amino acid esters. Starting from these discoveries, Morihara et al. [142] created in 1993 the so-called molecular footprints on the surface of an Al-doped silica gel using an amino acid derivative as chiral template molecule. After removal of the template, the catalyst showed low but significant e.s. for the hydrolysis of a structurally related anhydride. On the same fines, Cativiela and coworkers [143] treated silica or alumina with diethylaluminum chloride and menthol. The resulting modified material catalyzed Diels-Alder reaction between cyclopentadiene and methacrolein with modest e.s. (30% e.e.). As mentioned in the Introduction, all these catalysts are not yet practically important but rather they demonstrate that amorphous metal oxides can be modified successfully. [Pg.500]

The Diels-Alder reaction between a 2-fluoroacrylic acid derivative of 8-phenyl-menthol (83) and cyclopentadiene shows high exo- and jr-diastereofacial selectivity (Scheme 30). The C(2) of endocyclic cross-conjugated 2-(acylamino)-l,3-dienes exerts excellent diastereofacial control on the Diels-Alder addition with electron-deficient dienophiles to produce octahydroquinolines. ... [Pg.470]

Further C6o derivatives of menthol include a menthyl malonate adduct119 and a carbamate derived from l,2-epimino[60]fullerene.429 Resin acid derivatives have been prepared by Diels-Alder reaction of C6o with methyl levopi-marate, whose parent acid can be isolated from rosin.430 Finally, a derivative of a-pinene was synthesized in the context of a study on the photochemically induced addition of allyl stannanes to Cr,o, a reaction presumably proceeding via SET from the stannane to the triplet excited fullerene.431... [Pg.100]

Poor (<4% de) to modest (56% de) amounts of diastereofacial selection is observed in the cycloaddition of nitrile oxides to optically active acrylates. The plan in each case, of course, was to use a chiral auxiliary which would preferentially shield one of the two ir-faces of the dipolarophile. Of the auxiliaries used, the sulfonamide esters derived from (+)-camphorsulfonyl chloride worked best, the menthyl esters derived from (-)-menthol the poorest (<4% de). As illustrated in Table 19, changes in both temperature and solvent had either no or little affect on the product ratios. Unlike Diels-Alder reactions, the addition of Lewis acids, specifically Et2AlCl, EtAlCh and TiCL, resulted in significant decreases in both the rate of cycloaddition and isolated yield, without an appreciable change in diastereomer ratio. ... [Pg.263]

The earliest report of a reaction mediated by a chiral three coordinate aluminum species describes an asymmetric Meerwein-Poimdorf-Verley reduction of ketones with chiral aluminum alkoxides which resulted in low induction in the alcohol products [1]. Subsequent developments in the area were sparse until over a decade later when chiral aluminum Lewis acids began to be explored in polymerization reactions, with the first report describing the polymerization of benzofuran with catalysts prepared from and ethylaluminum dichloride and a variety of chiral compounds including /5-phenylalanine [2]. Curiously, these reports did not precipitate further studies at the time because the next development in the field did not occur until nearly two decades later when Hashimoto, Komeshima and Koga reported that a catalyst derived from ethylaluminum dichloride and menthol catalyzed the asymmetric Diels-Alder reaction shown in Sch. 1 [3,4]. This is especially curious because the discovery that a Diels-Alder reaction could be accelerated by aluminum chloride was known at the time the polymerization work appeared [5], Perhaps it was because of this long delay, that the report of this asymmetric catalytic Diels-Alder reaction was to become the inspiration for the dramatic increase in activity in this field that we have witnessed in the twenty years since its appearance. It is the intent of this review to present the development of the field of asymmetric catalytic synthesis with chiral aluminum Lewis acids that includes those reports that have appeared in the literature up to the end of 1998. This review will not cover polymerization reactions or supported reactions. The latter will appear in a separate chapter in this handbook. [Pg.283]

The first successful examples of enantioselective Diels-Alder reactions catalyzed by chirally modified Lewis acids were reported by Koga [85]. The catalysts were prepared from menthol and AlEt2Cl [86]. Alumina-supported chiral menthoxy aluminum derivatives (64, 65, 66, 67) have been prepared by simple mixing of (-)-menthol, AlEt2Cl, and alumina in toluene under reflux. The reaction of methacrolein with cyclopentadiene (Eq. 20) was conducted with 67 as catalyst at -50 °C and afforded 81 % conversion with 31 % ee [87] Koga reported 57 % ee at -78 °C by use of an homogeneous catalyst [85]. Solid catalyst 69, prepared from silica gel-supported proli-nol 68 and AlEt2Cl (Eq. 21) is also an active catalyst in the same reaction, but with low enantioselectivity [87]. When the same catalyst was attached to crosslinked polystyrene (70) the ee in the reaction was lower [88]. [Pg.966]

In 1979, Koga and coworkers disclosed the first practical example of a catalytic enantioselective Diels-Alder reaction [44] promoted by a Lewis acidic complex, presumed to be menthoxyaluminum dichloride (1), derived from menthol and ethylaluminum di chloride, whose structure remains undefined [45]. This complex catalyzed the cycloaddition of cyclopentadiene with acrolein, methyl acrylate, and methacrolein with enantioselectivities as high as 72% ee. Oxidation of 2 (predominantly exo) followed by recrystallization actually lowered the ee ... [Pg.1120]

In the past Lewis acid-catalyzed [4+2] cycloaddition reactions of chiral alkyl acrylates have been systematically studied. Chiral auxiliaries derived from camphor, menthol and amino acids or from carbohydrates have been developed. Stereochemical and theoretical aspects of these chiral inductors have been intensively reviewed (see. Chapter 6). Asymmetric Diels-Alder reactions of chiral acrylamides derived from Ca-symmetrical secondary amines lead selectively to the cycloadducts in the presence of Lewis acids such as AICI3. In reactions of chiral auxiliaries derived from (iS)-proline and (iS)-prolinol excellent endo/exo selectivities and diastereoselectivities were obtained in the presence of catalytic amounts of Et2AlCl or TiCL. Cycloadducts of chiral crotonoyl derivatives derived from oxazolidinones 62, sultam 63 or for example (S)-lactate IS were obtained with high selectivities in the presence of Lewis acids such as Et2AICl. [Pg.51]

Behr and Johnen reported [38] that myrcene is an important starting point for the synthesis of menthol, nerol/geraniol, and Unalool. Further derivates are citral, citroneUal, and citronellol, which are used because of their lemon-like smeU. Based on the diene structural component, it can be used for Diels-Alder reactions with unsaturated structures, which leads to synthesis of amberUke flavors and anticancer therapeutics. By a C-C linkage, geranylacetone and p spiingene can be obtained, derivates which can be used to synthesize side chains of vitamin E. [Pg.4121]

Another example, this time of a carbocyclic Diels-Alder reaction, is shown belowJ l The catalyst (33) is, of course, derived from (-)-menthol. In both cases the diene reacts with the complex of the chiral Lewis acid and the dienophile, whose two enantiotopic faces are no longer equivalent. [Pg.153]

The reaction of Fischer alkenyl carbene complexes 101 with imines 102 in the presence of a Lewis acid generates pyrroline derivatives 105 as a result of a formal [3+2] cycloaddition via metallacyclic intermediates 103 (Scheme 5.21) [32]. The intermediates 103 are supposed to be formed through a metalla-Diels-Alder reaction. High asymmetric induction is observed in the reaction of chiral alkenyl carbene complexes 101 derived from (—)-8-phenyl-menthol. The major isomer of the trans products 104 can be... [Pg.144]


See other pages where Diels-Alder reaction menthol derivatives is mentioned: [Pg.447]    [Pg.447]    [Pg.447]    [Pg.551]    [Pg.290]    [Pg.126]    [Pg.131]    [Pg.4]    [Pg.560]   
See also in sourсe #XX -- [ Pg.269 ]




SEARCH



Menthol

Menthol Diels-Alder reaction

Menthol reaction

© 2024 chempedia.info