Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction examples

Diels-Alder reactions.2 This diene provides an alternative to l-methoxy-3-trimethysilyloxy-1,3-butadiene (Danishefsky diene) in Diels-Alder reactions. Examples ... [Pg.101]

There are numerous attempts to correlate solvent parameters with the reaction rate of Diels-Alder reactions. Examples are the Brownstein Polarity Parameter the Solvophobicity Parameter 5 p 24,i25 D-jt parameter (based on the solvent effect on the reaction of tetracyanoethylene and diazodiphenylmethane with benzene as the reference solvent) or the Acceptor Number aa 2V.128 parameter which describes the ability of a solvent to act as an electron pair acccplor). These examples included either reactions that were next to insensitive to solvent effects (like that in Table 9) or reactions in which the reactants mainly interact with the electron pair on the donor atom of the solvent ". [Pg.1051]

There are numerous attempts to correlate solvent parameters with the reaction rate of Diels-Alder reactions. Examples are the Brownstein Polarity Parameter 5, the Solvophobicity Parameter the D-n parameter (based on the solvent effect on... [Pg.1051]

Chiral copper Lewis acids have also found broad utility in a variety of hetero Diels-Alder reactions. Examples in which the copper Lewis acid activates either the diene or dienophile component have been reported. Evans and coworkers utilized Cu(II)/BOX catalysts in hetero Diels-Alder reactions using unsaturated acyl phosphonates (272) or acyl esters as dienes (Scheme 17.62, Equation 17.8)... [Pg.423]

HOWTO Draw the Product of a Diels-Alder Reaction Example Draw the product of the following Diels-Alder reaction ... [Pg.590]

Diels-Alder reaction is the 1,4-addition of an alkene or alkyne (dienophile) across a conjugated diene. An example is the addition of pro-penal to buta-l,3-diene to give A -tetrahy-... [Pg.136]

Chemists usually learn about reactions according to fiinctional groups for example, How can I make an aldehyde and what reactions are known for aldehydes " This is clearly not a very good starting point for classifying reactions. The poor state of affairs in the definition of reaction types is further quite vividly illustrated by the fact that many chemical reactions are identified by being named after their inventor Diels-Alder reaction, Michael addition, Lobry-de Bruyn-van Ekenstein rear-... [Pg.172]

As an example, we shall discuss the Diels-Alder reaction of 2-methoxybuta-l,3-diene with acrylonitrile. Figure 3-7 gives the reaction equation, the correlation diagram of the HOMOs and LUMOs, and the orbital coefficients of the correlated HOMO and LUMO. [Pg.179]

The Diels-Alder Reaction consists in the direct combination of a compound containing a conjugated diene system u ith a reagent which possesses a double or triple bond activated bj suitable adjacent groups. Examples of such reagents are maleic anhydride, p-benzoquinone, acraldehyde and acetylene dicarboxylic esters. Combination always occurs at the 1,4 positions of the diene system ... [Pg.292]

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

A combination of the promoting effects of Lewis acids and water is a logical next step. However, to say the least, water has not been a very popular medium for Lewis-acid catalysed Diels-Alder reactions, which is not surprising since water molecules interact strongly with Lewis-acidic and the Lewis-basic atoms of the reacting system. In 1994, when the research described in this thesis was initiated, only one example of Lewis-acid catalysis of a Diels-Alder reaction in water was published Lubineau and co-workers employed lanthanide triflates as a catalyst for the Diels-Alder reaction of glyoxylate to a relatively unreactive diene . No comparison was made between the process in water and in organic solvents. [Pg.31]

The Diels-Alder reaction is often quoted as an example of a reaction that is little influenced by the solvent. However, this is not fully justified, since particularly water can have a pronounced effect on the rate of this reaction. This was first noticed by E elte et al." in 1973 and rediscovered in 1980 by Breslow In the years that followed this intriguing discovery, it turned out that acceleration of Diels-Alder reactions by water is a general phenomenon that can ultimately result in up to 12,800 fold accelerations". Synthetic applications followed rapidly". ... [Pg.43]

The rate constants for the catalysed Diels-Alder reaction of 2.4g with 2.5 (Table 2.3) demonstrate that the presence of the ionic group in the dienophile does not diminish the accelerating effect of water on the catalysed reaction. Comparison of these rate constants with those for the nonionic dienophiles even seems to indicate a modest extra aqueous rate enhancement of the reaction of 2.4g. It is important to note here that no detailed information has been obtained about the exact structure of the catalytically active species in the oiganic solvents. For example, ion pairing is likely to occur in the organic solvents. [Pg.56]

The first example of enantioselective catalysis of a Diels-Alder reaction was reported in 1979 . Since then, an extensive set of successful chiral Lewis-acid catalysts has been prepared. Some selected examples will be presented here together with their mechanistic interpretation. For a more complete... [Pg.77]

In Chapter 2 the Diels-Alder reaction between substituted 3-phenyl-l-(2-pyridyl)-2-propene-l-ones (3.8a-g) and cyclopentadiene (3.9) was described. It was demonstrated that Lewis-acid catalysis of this reaction can lead to impressive accelerations, particularly in aqueous media. In this chapter the effects of ligands attached to the catalyst are described. Ligand effects on the kinetics of the Diels-Alder reaction can be separated into influences on the equilibrium constant for binding of the dienoplule to the catalyst (K ) as well as influences on the rate constant for reaction of the complex with cyclopentadiene (kc-ad (Scheme 3.5). Also the influence of ligands on the endo-exo selectivity are examined. Finally, and perhaps most interestingly, studies aimed at enantioselective catalysis are presented, resulting in the first example of enantioselective Lewis-acid catalysis of an organic transformation in water. [Pg.82]

This goal might well be achieved by introducing an auxiliary that aids the coordination to the catalyst. After completion of the Diels-Alder reaction and removal of the auxiliary the desired adduct is obtained. This approach is summarised in Scheme 4.6. Some examples in which a temporary additional coordination site has been introduced to aid a catalytic reaction have been reported in the literature and are described in Section 4.2.1. Section 4.2.2 relates an attempt to use (2-pyridyl)hydrazone as coordinating auxiliary for the Lewis-acid catalysed Diels-Alder reaction. [Pg.111]

Another class of reaction where you can see at once that the disconnection is the reverse of the reaction is Pericychc Reactions. An example would be the Diels-Alder reaction between butadiene and maleic anhydride. Draw the mechanism and the product. [Pg.5]

Since the Diels-Alder reaction is so good ifs worth going to some trouble to get back to a recognisable Diels-Alder product Take TM 225 for example. The first D-A disconnection is obvious, but can you find your way back to a second ... [Pg.71]

Simple cyclobutanes do not readily undergo such reactions, but cyclobutenes do. Ben-zocyclobutene derivatives tend to open to give extremely reactive dienes, namely ortho-c]uin(xlimethanes (examples of syntheses see on p. 280, 281, and 297). Benzocyclobutenes and related compounds are obtained by high-temperature elimination reactions of bicyclic benzene derivatives such as 3-isochromanone (C.W. Spangler, 1973, 1976, 1977), or more conveniently in the laboratory, by Diels-Alder reactions (R.P. Thummel, 1974) or by cycliza-tions of silylated acetylenes with 1,5-hexadiynes in the presence of (cyclopentadienyl)dicarbo-nylcobalt (W.G, Aalbersberg, 1975 R.P. Thummel, 1980). [Pg.80]

Palladium catalyzed cycloisomerizations of 6-cn-l-ynes lead most readily to five-membered rings. Palladium binds exclusively to terminal C = C triple bonds in the presence of internal ones and induces cyclizations with high chemoselectivity. Synthetically useful bis-exocyclic 1,3-dienes have been obtained in high yields, which can, for example, be applied in Diels-Alder reactions (B.M. Trost, 1989). [Pg.84]

Most of the synthetic reactions leading to substituted carbon compounds can be re> versed. Reiro-a do or /le/fo-Diels-Alder reactions, for example, are frequently used in the de-gradative fragmentation of complex molecules to give simpler fragments. In synthesis, such... [Pg.88]

As final examples, the intramolecular cyclopropane formation from cycloolefins with diazo groups (S.D. Burke, 1979), intramolecular cyclobutane formation by photochemical cycloaddition (p. 78, 297f., section 4.9), and intramolecular Diels-Alder reactions (p. 153f, 335ff.) are mentioned. The application of these three cycloaddition reactions has led to an enormous variety of exotic polycycles (E.J. Corey, 1967A). [Pg.94]

The allenyl moiety (2,3-aikadienyl system) in the carbonylation products is a reactive system and further reactions such as intramolecular Diels-Alder and ene reactions are possible by introducing another double bond at suitable positions of the starting 2-alkynyl carbonates. For example, the propargylic carbonate 33 which has l,8(or 1.9)-diene-3-yne system undergoes tandem carbonylation and intramolecular Diels-Alder reaction to afford the polycyclic compound 34 under mild conditions (60 C, 1 atm). The use of dppp as ligand is important. One of the double bonds of the allenyl ester behaves as part of the dieneflSj. [Pg.458]

Most examples of Diels-Alder reactions reported for both 2-vinyl and 3-vinylindoles involve typical electrophilic dienophiles such as benzoquinone, A"-phenylmaleimide and dimethyl acetylenedicarboxylate (see Table 16.1). T hese symmetrical dienophiles raise no issues of rcgiosclectivity. While there arc fewer examples of use of mono-substituted dienophiles, they appear to react... [Pg.159]

Several Diels-Alder reactions in which acrolein participates as the dienophile are of industrial significance. These reactions involve butadiene or substituted butadienes and yield the corresponding 1,2,5,6-tetrahydroben2aldehyde derivative (THBA) examples are given in Table 9 (90). These products have found use in the epoxy and perfume/fragrance industries. [Pg.127]

In the area of moleculady designed hot-melt adhesives, the most widely used resins are the polyamides (qv), formed upon reaction of a diamine and a dimer acid. Dimer acids (qv) are obtained from the Diels-Alder reaction of unsaturated fatty acids. Linoleic acid is an example. Judicious selection of diamine and diacid leads to a wide range of adhesive properties. Typical shear characteristics are in the range of thousands of kilopascals and are dependent upon temperature. Although hot-melt adhesives normally become quite brittle below the glass-transition temperature, these materials can often attain physical properties that approach those of a stmctural adhesive. These properties severely degrade as the material becomes Hquid above the melt temperature. [Pg.235]

Because the Corey synthesis has been extensively used in prostaglandin research, improvements on the various steps in the procedure have been made. These variations include improved procedures for the preparation of norbomenone (24), alternative methods for the resolution of acid (26), stereoselective preparations of (26), improved procedures for the deiodination of iodolactone (27), alternative methods for the synthesis of Corey aldehyde (29) or its equivalent, and improved procedures for the stereoselective reduction of enone (30) (108—168). For example, a catalytic enantioselective Diels-Alder reaction has been used in a highly efficient synthesis of key intermediate (24) in 92% ee (169). [Pg.158]

Myrcene with its conjugated diene system readily undergoes Diels-Alder reactions with a number of dienophiles. For example, reaction with 3-meth.5i-3-pentene-2-one with a catalytic amount of AlCl gives an intermediate monocyclic ketone, which when cyclized with 85% phosphoric acid produces the bicycHc ketone known as Iso E Super [54464-57-2] (49). The product is useful in providing sandalwood-like and cedarwood-like fragrance ingredients (91). [Pg.417]

Diels-Alder Reactions. The important dimerization between 1,3-dienes and a wide variety of dienoplules to produce cyclohexene derivatives was discovered in 1928 by Otto Diels and Kurt Alder. In 1950 they won the Nobel prize for their pioneering work. Butadiene has to be in the j -cis form in order to participate in these concerted reactions. Typical examples of reaction products from the reaction between butadiene and maleic anhydride (1), or cyclopentadiene (2), or itself (3), are <7 -1,2,3,6-tetrahydrophthaHc anhydride [27813-21 -4] 5-vinyl-2-norbomene [3048-64-4], and 4-vinyl-1-cyclohexene [100-40-3], respectively. [Pg.343]


See other pages where Diels-Alder reaction examples is mentioned: [Pg.483]    [Pg.398]    [Pg.479]    [Pg.483]    [Pg.398]    [Pg.479]    [Pg.15]    [Pg.42]    [Pg.309]    [Pg.631]    [Pg.588]    [Pg.3]    [Pg.6]    [Pg.8]    [Pg.8]    [Pg.9]    [Pg.27]    [Pg.32]    [Pg.48]    [Pg.168]    [Pg.175]    [Pg.85]    [Pg.92]    [Pg.210]   
See also in sourсe #XX -- [ Pg.495 , Pg.496 , Pg.497 , Pg.502 , Pg.514 , Pg.521 , Pg.523 ]

See also in sourсe #XX -- [ Pg.861 , Pg.872 , Pg.873 ]

See also in sourсe #XX -- [ Pg.71 , Pg.162 ]




SEARCH



Diels-Alder cycloaddition reaction biological example

Examples reaction

Inverse electron demand Diels-Alder reactions, examples using

Some examples of Diels-Alder reactions

The Diels-Alder as an Example of a Pericyclic Reaction

© 2024 chempedia.info