Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dielectric, definition

Phillips 1C (1967) A posteriori theory of covalent bonding. Phys Rev Lett 19 415-417 Phillips 1C (1968) Dielectric definition of electronegativity. Phys Rev Lett 20 550-553 Phillips 1C, Van Vechten JA (1970) New set of tetrahedral covalent radii. Phys Rev B 2 2147—... [Pg.530]

In a medium where the relative dielectric constant is e, the force between fixed chages at a definite separation is decreased by the dimensionless factor e. This is true regardless of the system of units and is incorporated into Eqs. (10.101) and (10.102) by dividing the right-hand side of each by e. ... [Pg.715]

If we now transfer our two interacting particles from the vacuum (whose dielectric constant is unity by definition) to a hypothetical continuous isotropic medium of dielectric constant e > 1, the electrostatic attractive forces will be attenuated because of the medium s capability of separating charge. Quantitative theories of this effect tend to be approximate, in part because the medium is not a structureless continuum and also because the bulk dielectric constant may be an inappropriate measure on the molecular scale. Eurther discussion of the influence of dielectric constant is given in Section 8.3. [Pg.393]

Such a mechanism is open to serious objections both on theoretical and experimental grounds. Cationic polymerizations usually are conducted in media of low dielectric constant in which the indicated separation of charge, and its subsequent increase as monomer adds to the chain, would require a considerable energy. Moreover, termination of chains growing in this manner would be a second-order process involving two independent centers such as occurs in free radical polymerizations. Experimental evidence indicates a termination process of lower order (see below). Finally, it appears doubtful that a halide catalyst is effective without a co-catalyst such as water, alcohol, or acetic acid. This is quite definitely true for isobutylene, and it may hold also for other monomers as well. [Pg.219]

This definition of electrochemistry disregards systems in which nonequilibrium charged species are produced by external action in insulators for example, by electric discharge in the gas phase (electrochemistry of gases) or upon irradiation of liquid and sohd dielectrics (radiation chemistry). At the same time, electrochemistry deals with certain problems often associated with other fields of science, such as the structure and properties of sohd electrolytes and the kinetics of ioific reactions in solutions. [Pg.739]

To illustrate the use of the vector operators described in the previous section, consider the equations of Maxwell. In a vacuum they provide the basic description of an electromagnetic field in terms of the vector quantifies the electric field and 9C the magnetic field The definition of the field in a dielectric medium requires the introduction of two additional quantities, the electric displacement SH and the magnetic induction. The macroscopic electromagnetic properties of the medium are then determined by Maxwell s equations, viz. [Pg.254]

With the proper definitions of ex and k0, this equation is applicable to the metal as well as to the electrolyte in the electrochemical interface.24 Kornyshev et al109 used this approach to calculate the capacitance of the metal-electrolyte interface. In applying Eq. (45) to the electrolyte phase, ex is the dielectric function of the solvent, x extends from 0 to oo, and x extends from L, the distance of closest approach of an ion to the metal (whose surface is at x = 0), to oo, so that kq is replaced by kIo(x — L). Here k0 is the inverse Debye length for an electrolyte with dielectric constant of unity, since the dielectric constant is being taken into account on the left side of Eq. (45). For the metal phase (x < 0) one takes ex as the dielectric function of the metal and limits the integration over x ... [Pg.85]

There are basically two semicontinuum models one owing to Copeland, Kestner, andjortner (1970) (CKJ) and another to Fueki, Feng, and Kevan (1970, 1973 Fueki et al, 1971) (FFK). The calculations were designed for eh and eam,but have been extended to other polar media (Fueki et al., 1973 Jou and Dorfman, 1973). In these four or six solvent molecules form the first solvation layer in definite arrangement. Beyond that, the medium is taken as a continuum with two dielectric constants and a value of VQ, the lowest electron energy in the conduction state. [Pg.172]

Nevertheless the heat capacity of a carbon resistor was not so low as that of crystalline materials used later. More important, carbon resistors had an excess noise which limited the bolometer performance. In 1961, Low [61] proposed a bolometer which used a heavily doped Ge thermometer with much improved characteristics. This type of bolometer was rapidly applied to infrared astronomy as well also to laboratory spectroscopy. A further step in the development of bolometers came with improvements in the absorber. In the early superconducting bolometer built by Andrews et al. (1942) [62], the absorber was a blackened metal foil glued to the 7A thermometer. Low s original bolometer [61] was coated with black paint and Coron et al. [63] used a metal foil as substrate for the black-painted absorber. A definite improvement is due to J. Clarke, G. I. Hoffer, P. L. Richards [64] who used a thin low heat capacity dielectric substrate for the metal foil and used a bismuth film absorber instead of the black paint. [Pg.336]

The paired cation Pn+A The relative concentrations of the paired and unpaired cations are governed by an Ostwald-type equilibrium with dissociation constant KD. The magnitude of this is governed by the size and shape of the ions and the dielectric constant of the solvent. In contrast to anionic polymerisations, there is no definite evidence for distinguishing between tight and solvent-separated ion-pairs. [Pg.465]

The second definition of the purpose of a carrier was to remove the overburden of material above a surface above the device plane. For present purposes, we define the device level as the boundary between the material one wishes to remove and the material one wants to keep. It is not necessarily planar, and it moves up with each layer. For oxide CMP, this layer lies within the topmost film layer. For metal CMP, this surface is defined by the topmost surface of the dielectric into which lines and vias are etched for a damascene process. This definition must accommodate a wafer with a modest amount of bow, tilt, warp, and total thickness variation. Furthermore, it must accommodate very modest amounts of bow, warp, tilt. [Pg.21]

An ion adsorbed on the surface of a suspension will draw near to it an ion of opposite sign in the solution these ions in the double layer are thus hound and can only escape if their kinetic energy exceeds a definite critical value W. If the chemically adsorbed ions have a valency % and n is the valency of the opposite charged ions in the liquid of dielectric constant K in contact with the solid and separated from the former by a distance x, we obtain... [Pg.286]

This definition for K holds only for monovalent ions and depends on the aqueous dielectric constant (c), Boltzmann s energy (k T), and the electronic charge (e). The Debye length varies inversely with the ionic strength of the solution and thus measures the ability of the ions to screen the protein/interface interactions. [Pg.154]


See other pages where Dielectric, definition is mentioned: [Pg.1814]    [Pg.1814]    [Pg.254]    [Pg.16]    [Pg.406]    [Pg.399]    [Pg.271]    [Pg.116]    [Pg.223]    [Pg.227]    [Pg.319]    [Pg.322]    [Pg.442]    [Pg.160]    [Pg.120]    [Pg.83]    [Pg.382]    [Pg.382]    [Pg.18]    [Pg.42]    [Pg.43]    [Pg.56]    [Pg.197]    [Pg.236]    [Pg.132]    [Pg.17]    [Pg.125]    [Pg.175]    [Pg.39]    [Pg.102]    [Pg.159]    [Pg.96]    [Pg.104]    [Pg.510]   
See also in sourсe #XX -- [ Pg.562 ]




SEARCH



© 2024 chempedia.info