Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazonium ions stability

Pyridine-2- and -4-diazonium ions are far less stable than benzenediazonium ions. Azolediazonium salts generally show intermediate stability provided diazotization is carried out in concentrated acid, many of the usual diazonium reactions succeed. Indeed, azolediazonium salts are often very reactive in coupling reactions. [Pg.96]

Aliphatic primary amines also undergo the diazotization reaction in weakly acidic solution however the resulting aliphatic diazonium ions are generally unstable, and easily decompose into nitrogen and highly reactive carbenium ions. The arenediazonium ions are stabilized by resonance with the aromatic ring ... [Pg.87]

The diazotization of amino derivatives of six-membered heteroaromatic ring systems, particularly that of aminopyridines and aminopyridine oxides, was studied in detail by Kalatzis and coworkers. Diazotization of 3-aminopyridine and its derivatives is similar to that of aromatic amines because of the formation of rather stable diazonium ions. 2- and 4-aminopyridines were considered to resist diazotization or to form mainly the corresponding hydroxy compounds. However, Kalatzis (1967 a) showed that true diazotization of these compounds proceeds in a similar way to that of the aromatic amines in 0,5-4.0 m hydrochloric, sulfuric, or perchloric acid, by mixing the solutions with aqueous sodium nitrite at 0 °C. However, the rapidly formed diazonium ion is hydrolyzed very easily within a few minutes (hydroxy-de-diazonia-tion). The diazonium ion must be used immediately after formation, e. g., for a diazo coupling reaction, or must be stabilized as the diazoate by prompt neutralization (after 45 s) to pH 10-11 with sodium hydroxide-borax buffer. All isomeric aminopyridine-1-oxides can be diazotized in the usual way (Kalatzis and Mastrokalos, 1977). The diazotization of 5-aminopyrimidines results in a complex ring opening and conversion into other heterocyclic systems (see Nemeryuk et al., 1985). [Pg.20]

Salts of diazonium ions with certain arenesulfonate ions also have a relatively high stability in the solid state. They are also used for inhibiting the decomposition of diazonium ions in solution. The most recent experimental data (Roller and Zollinger, 1970 Kampar et al., 1977) point to the formation of molecular complexes of the diazonium ions with the arenesulfonates rather than to diazosulfonates (ArN2 —0S02Ar ) as previously thought. For a diazonium ion in acetic acid/water (4 1) solutions of naphthalene derivatives, the complex equilibrium constants are found to increase in the order naphthalene < 1-methylnaphthalene < naphthalene-1-sulfonic acid < 1-naphthylmethanesulfonic acid. The sequence reflects the combined effects of the electron donor properties of these compounds and the Coulomb attraction between the diazonium cation and the sulfonate anions (where present). Arenediazonium salt solutions are also stabilized by crown ethers (see Sec. 11.2). [Pg.26]

This statement does not mean, however, that the mechanism of diazotization was completely elucidated with that breakthrough. More recently it was possible to test the hypothesis that, in the reaction between the nitrosyl ion and an aromatic amine, a radical cation and the nitric oxide radical (NO ) are first formed by a one-electron transfer from the amine to NO+. Stability considerations imply that such a primary step is feasible, because NO is a stable radical and an aromatic amine will form a radical cation relatively easily, especially if electron-donating substituents are present. As discussed briefly in Section 2.6, Morkovnik et al. (1988) found that the radical cations of 4-dimethylamino- and 4-7V-morpholinoaniline form the corresponding diazonium ions with the nitric oxide radical (Scheme 2-39). [Pg.43]

The reversibility of aromatic diazotization in methanol may indicate that the intermediate corresponding to the diazohydroxide (3.9 in Scheme 3-36), i. e., the (Z)-or (is)-diazomethyl ether (Ar — N2 — OCH3), may be the cause of the reversibility. In contrast to the diazohydroxide this compound cannot be stabilized by deprotonation. It can be protonated and then dissociates into a diazonium ion and a methanol molecule. This reaction is relatively slow (Masoud and Ishak, 1988) and therefore the reverse reaction of the diazomethyl ether to the amine may be competitive. Similarly the reversibility of heteroaromatic amine diazotizations with a ring nitrogen in the a-position may be due to the stabilization of the intermediate (Z)-diazohydroxide, hydrogen-bonded to that ring nitrogen (Butler, 1975). However, this explanation is not yet supported by experimental data. [Pg.64]

On the basis of these results it seems to the present author that inner and outer complexes can reasonably be assumed for the electron transfer to the diazonium ion, but that an outer-sphere mechanism is more likely for metal complexes with a completely saturated coordination sphere of relatively high stability, such as Fe(CN) (Bagal et al., 1974) or ferrocene (Doyle et al., 1987 a). Romming and Waerstad (1965) isolated the complex obtained from a Sandmeyer reaction of benzenediazonium ions and [Cu B ]- ions. The X-ray structural data for this complex also indicate an outer-sphere complex. [Pg.197]

Zollinger and coworkers (Nakazumi et al., 1983) therefore supposed that the diazonium ion and the crown ether are in a rapid equilibrium with two complexes as in Scheme 11-2. One of these is the charge-transfer complex (CT), whose stability is based on the interaction between the acceptor (ArNj) and donor components (Crown). The acceptor center of the diazonium ion is either the (3-nitrogen atom or the combined 7r-electron system of the aryl part and the diazonio group, while the donor centers are one or more of the ether oxygen atoms. The other partner in the equilibrium is the insertion complex (IC), as shown in structure 11.5. Scheme 11-2 is intended to leave the question open as to whether the CT and IC complexes are formed competitively or consecutively from the components. ... [Pg.300]

Complexed arenediazonium salts are stabilized against photochemical degradation (Bartsch et al., 1977). This effect was studied in the former German Democratic Republic in the context of research and development work on diazo copying processes (Israel, 1982 Becker et al., 1984) as well as in China (Liu et al., 1989). The comparison of diazonium ion complexation by 18-crown-6 and dibenzo-18-crown-6 is most interesting. Becker at al. (1984) found mainly the products of heterolytic dediazoniation when 18-crown-6 was present in photolyses with a medium pressure mercury lamp, but products of homolysis appeared in the presence of dibenzo-18-crown-6. The dibenzo host complex exhibited a charge-transfer absorption on the bathochromic slope of the diazonio band. Results on the photo-CIDNP effect in the 15N NMR spectra of isotopically labeled diazonium salts complexed by dibenzo-18-crown-6 indicate that the primary step is a single electron transfer. [Pg.302]

Salts of diazonium ions with certain arenesulfonate ions also have a relatively high stability in the solid state. They are also used for inhibiting the decomposition of diazonium ions in solution. Experimental data42,43 point to the formation of molecular... [Pg.636]

As seen in Figure 13-24, secondary amines react directly with acidic sodium nitrite to form a nitrosamine. (These compounds are very, very toxic.) Primary amines react under similar conditions to form unstable diazonium salts (see Figure 13-25). Diazonium salts readily lose the very stable N2 to form reactive carbocations that are useful in a number of synthetic pathways. Figure 13-26 shows the resonance stabilization of a diazonium ion. [Pg.234]

Nitrosation, diazotation, and deamination processes take place in the reactions resulting in alcohols and N2 gas as final products. From the studies on the pH-dependence of the rate constants at different temperatures, a mechanism was proposed involving diazonium ions as intermediates. With the prediction that coordination to the metal could stabilize the otherwise extremely reactive diazonium species, the mechanism of these reactions are being studied in organic media. [Pg.102]

The formation of -butyldiazoate by reaction of [Fe(CN)5(NO)]2 with lithium -butyl amide contrasts with the formation of dibutylamine as the main product in the reaction of the same complex with -butylamine (85). This can be explained if the diazoic/diazoate equilibrium shown in Fig. 18 is shifted to the left far enough to form of a diazenido by loss of hydroxide. Attack of -butylamine on the a-carbon of the diazenido species, produces dibutylamine. DFT computed results suggest that the stabilization by complexation of the intermediate diazonium ion (see Fig. 18) is large for the iron-pentacyano complex, in agreement with the fact that no rearrangement products were observed in the reaction of this species with -butylamine (86). The reaction has been proposed as a good route for the preparation of symmetrical, unsymmetrical, and cyclic secondary amines (85). [Pg.103]

Brumaghim, J.L., Michels, M., Pagliero, D. and Raymond, K.N. (2004) Encapsulation and stabilization of reactive aromatic diazonium ions and the tropylium ion within a supramolecular host. Eur. J. Org. Chem., 5115-5118. [Pg.192]

The stabilities of pyridine-2- and -4-diazonium ions resemble those of aliphatic rather than benzenoid diazonium cations. Benzenediazonium ions are stabilized by mesomerism (726) which... [Pg.266]

Diazonium salts can be regarded as combinations of carbocations R with N2 and, because of the considerable stability of nitrogen in the form of N2, we would expect diazonium salts to decompose readily with evolution of nitrogen and formation of carbocations. This expectation is realized, and diazonium salts normally decompose in this manner in water solution. The aliphatic diazonium ions decompose so rapidly that their presence can only be inferred... [Pg.1130]

With propanamine, loss of nitrogen from the diazonium ion gives the very poorly stabilized propyl cation, which then undergoes a variety of reactions that are consistent with the carbocation reactions discussed previously (see Sections 8-9B and 15-5E) ... [Pg.1131]

The phenyl cation (134) firstpostulated by Waters335 is a highly reactive species oflow stability and plays a fundamental role in organic chemistry—for example, in the chemistry of diazonium ions. According to gas-phase studies and calculations, its stability is between that of the ethyl cation and the vinyl cation.336 Since it is an extremely electrophilic and short-lived species, it could not be isolated or observed directly in the condensed phase. For example, solvolytic and dediazoniation studies under superacidic conditions by Faali et al.337,338 failed to find evidence of the intermediacy of the phenyl cation. Hyperconjugative stabilization via orf/zo-Me3Si or... [Pg.139]

Levisalles and co-workers466 and Wentrup and Dahn467 studied enoldiazonium ions generated under superacidic conditions. More recently Laali and coworkers468 have shown that the stability of enoldiazonium ions can be greatly enhanced by an a-silyl functionality. Equation (4.137) shows the characteristic diazonium ion products. [Pg.386]

Various diazonium salts have been prepared using this approach55 and thermoanalytically characterized.56 Both the structure of the diazonium moiety and the counterion clearly influence the stability of the diazonium moiety. The thermally stable diazonium ion 71 (Z = Cl, Y = CH20) [ty2 (25°) > 100 days] is also capable of scavenging various nucleophiles (amines, phenols, and anilines).57 This resin with a tetrafluoroborate counterion (resin 66) is called T2 diazonium resin and it is now commercially available from Novabiochem. [Pg.142]

Dahmen S, Braese S, The first stable diazonium ion on solid support— Investigations on stability and usage as linker and scavenger in solid-phase organic synthesis, Angew. Chem. Int. Ed., 39 3681-3683, 2000. [Pg.145]

Curtin et al. (1965) tried to prove the existence of vinyl diazonium ions, which were thought to be of intermediate stability between that of aliphatic and aromatic diazonium ions from obvious considerations. However, the authors attempts to intercept these intermediates in the deamination of vinylamine failed. ... [Pg.231]

The stabilities of pyridine-2- and -4-diazonium ions resemble those of aliphatic rather than benzenoid diazonium cations. Benzenediazonium ions are stabilized by mesomerism which involves electron donation from the ring, but such electron donation is unfavorable in 2- and 4-substituted pyridines. On formation, pyridine diazonium cations normally immediately react with the aqueous solvent to form pyridones. However, by carrying out the diazotization in concentrated HC1 or HBr, useful yields of chloro- and bromopyridines 752 can be obtained. Iodinated pyridines can be obtained in good yield using the Sandmeyer reaction. Aminopyridazines and -pyrazines, 2- and 4-aminopyrimidines, and amino-1,2,4-triazines behave similarly. Nucleophilic fluorination via the BalzSchiemann reaction of diazonium fluoroborates yields fluoropyridines, including 2-fluoropyridines. Fluoroborates can also be converted into fluoro compounds by ultraviolet irradiation. [Pg.347]


See other pages where Diazonium ions stability is mentioned: [Pg.321]    [Pg.321]    [Pg.761]    [Pg.62]    [Pg.106]    [Pg.108]    [Pg.114]    [Pg.181]    [Pg.190]    [Pg.307]    [Pg.465]    [Pg.313]    [Pg.11]    [Pg.609]    [Pg.337]    [Pg.162]    [Pg.633]    [Pg.637]    [Pg.235]    [Pg.373]    [Pg.24]    [Pg.761]    [Pg.612]    [Pg.450]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Ion , stability

© 2024 chempedia.info