Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazo protonation

FIGURE 22 5 The diazo mum ion generated by treatment of a primary al kylamine with nitrous acid loses nitrogen to give a car bocation The isolated prod ucts are derived from the carbocation and include in this example alkenes (by loss of a proton) and an al cohol (nucleophilic capture by water)... [Pg.944]

In the presence of proton-donative organic solvents (alcohols), aliphatic amines do not react with diazonium, whereas aromatic amines form mainly triazenes and also para-aminoazo compounds, which subsequently interact slowly with an excess of diazo reagent via N-coupling and form disazo derivatives. [Pg.62]

The Bamford-Stevens decomposition of tosylhydrazones by base has been applied to steroids, although not extensively. It has been demonstrated that the reaction proceeds via a diazo compound which undergoes rapid decomposition. The course of this decomposition depends upon the conditions in proton-donating solvents the reaction has the characteristics of a process involving carbonium ions, and olefins are formed, often accompanied by Wagner-Meerwein-type rearrangement. In aprotic solvents the diazo compound appears to give carbene intermediates which form olefins and insertion products ... [Pg.351]

In a protic solvent—glycols are often used, with the base being the corresponding sodium glycolate—the reaction proceeds via formation of a carbenium ion 5. The diazo compound 3 can be converted into the diazonium ion 4 through transfer of a proton from the solvent (S-H). Subsequent loss of nitrogen then leads to the carbenium ion 5 ... [Pg.23]

When an aprotic solvent is used, the reaction proceeds via an intermediate carbene 6. In the absence of a proton donor, a diazonium ion cannot be formed and the diazo compound 3 loses nitrogen to give the carbene 6 ... [Pg.23]

The ionization of (E)-diazo methyl ethers is catalyzed by the general acid mechanism, as shown by Broxton and Stray (1980, 1982) using acetic acid and six other aliphatic and aromatic carboxylic acids. The observation of general acid catalysis is evidence that proton transfer occurs in the rate-determining part of the reaction (Scheme 6-5). The Bronsted a value is 0.32, which indicates that in the transition state the proton is still closer to the carboxylic acid than to the oxygen atom of the methanol to be formed. If the benzene ring of the diazo ether (Ar in Scheme 6-5) contains a carboxy group in the 2-position, intramolecular acid catalysis is observed (Broxton and McLeish, 1983). [Pg.113]

The next intermediate, 5-diazo-6-methylene-l,3-cyclohexadiene (6.75) was postulated by Trondlin et al. (1978) because unsolvated ( naked ) acetate ions in benzene are strong proton acceptors. Experimental evidence for its role in this mechanism was given by these authors in two ways. [Pg.139]

If the diazonium acetate ion pair can lose a proton, it should also be possible to add a proton to the diazo-methylene compound 6.75. This hypothesis was checked experimentally by carrying out the indazole syntheses in the presence of D2S04. The result was not conclusive, as H/D exchange was observed to a small extent in two cases, but not in others. [Pg.139]

In another investigation (Loewenschuss et al., 1976) dediazoniation was studied in TFE and in acetonitrile in the presence of pyridine. There is UV and NMR evidence for the formation of a diazopyridinium cation in addition, -CIDNP absorption and emission signals were observed. Systems containing diazonium salts and pyridine are important in industrial chemistry, as pyridine is used as a proton acceptor in the diazo coupling reaction (see Sec. 12.8) in a considerable number of syntheses of azo dyes. At the same time pyridine has an unfavorable effect on the yield because of the competing homolytic dediazoniation. [Pg.206]

The pK values for azolediazonium ions (Scheme 12-4) refer to the heterolysis of the NH bond, not to the addition of a hydroxy group. Therefore, these heteroaromatic diazo components may react either as a cation (as shown in Scheme 12-4) or as the zwitterion (after loss of the NH proton). Diener and Zollinger (1986) investigated the relative reactivities of these two equilibrium forms (Scheme 12-5) in the azo coupling reaction of l,3,4-triazole-2-diazonium ion with the tri-basic anion of 2-naphthol-3,6-disulfonic acid. [Pg.309]

The first step was found to be a fast pre-equilibrium (Scheme 12-8). The dependence of the measured azo coupling rate constants on the acidity function and the effect of electron-withdrawing substituents in the benzenediazo methyl ether resulting in reduced rate constants are consistent with a mechanism in which the slow step is a first-order dissociation of the protonated diazo ether to give the diazonium ion (Scheme 12-9). The azo coupling proper (Scheme 12-10) is faster than the dissociation, since the overall rate constant is found to be independent of the naphthol con-... [Pg.313]

Diazo ketones are relatively easy to prepare (see 10-122). When treated with acid, they add a proton to give a-keto diazonium salts, which are hydrolyzed to the... [Pg.465]

Two methods for converting carboxylic acids to esters fall into the mechanistic group under discussion the reaction of carboxylic acids with diazo compounds, especially diazomethane and alkylation of carboxylate anions by halides or sulfonates. The esterification of carboxylic acids with diazomethane is a very fast and clean reaction.41 The alkylating agent is the extremely reactive methyldiazonium ion, which is generated by proton transfer from the carboxylic acid to diazomethane. The collapse of the resulting ion pair with loss of nitrogen is extremely rapid. [Pg.227]

Carbenes from Sulfonylhydrazones. The second method listed in Scheme 10.8, thermal or photochemical decomposition of salts of arenesulfonylhy-drazones, is actually a variation of the diazoalkane method, since diazo compounds are intermediates. The conditions of the decomposition are usually such that the diazo compound reacts immediately on formation.147 The nature of the solvent plays an important role in the outcome of sulfonylhydrazone decompositions. In protic solvents, the diazoalkane can be diverted to a carbocation by protonation.148 Aprotic solvents favor decomposition via the carbene pathway. [Pg.913]

Products of a so-called vinylogous Wolff rearrangement (see Sect. 9) rather than products of intramolecular cyclopropanation are generally obtained from P,y-unsaturated diazoketones I93), the formation of tricyclo[2,1.0.02 5]pentan-3-ones from 2-diazo-l-(cyclopropene-3-yl)-l-ethanones being a notable exception (see Table 10 and reference 12)). The use of Cu(OTf), does not change this situation for diazoketone 185 in the presence of an alcoholl93). With Cu(OTf)2 in nitromethane, on the other hand, A3-hydrinden-2-one 186 is formed 160). As 186 also results from the BF3 Et20-catalyzed reaction in similar yield, proton catalysis in the Cu(OTf)2-catalyzed reaction cannot be excluded, but electrophilic attack of the metal carbene on the double bond (Scheme 26) is also possible. That Rh2(OAc)4 is less efficient for the production of 186, would support the latter explanation, as the rhodium carbenes rank as less electrophilic than copper carbenes. [Pg.153]

The exclusive and quantitative formation of oxepins upon Pd-catalyzed decomposition of 4-diazomethyl-4-methyl-4 //-pyrans (Entry 11) contrasts with the results of the CuCl-promoted reaction which affords a 2 1 mixture of oxepin (by 1,2-C migration) and 4-methylene-4//-pyran (by 1,2-H migration) under otherwise identical conditions 381J. When the methyl group at C-4 of the diazo precursor is replaced by H, the metal-catalyzed route to thiepins is no longer viable Pd- or Cu(I)-catalyzed decomposition of 4-diazomethyl-4//-thiopyrans invariably leads to 4-methylene-4H-thiopyrans 378 (Entry 10). Only the proton-catalyzed decomposition of these diazo compounds affords the desired thiepin, albeit in low yield 378). [Pg.226]

The Lewis acid-Lewis base interaction outlined in Scheme 43 also explains the formation of alkylrhodium complexes 414 from iodorhodium(III) meso-tetraphenyl-porphyrin 409 and various diazo compounds (Scheme 42)398), It seems reasonable to assume that intermediates 418 or 419 (corresponding to 415 and 417 in Scheme 43) are trapped by an added nucleophile in the reaction with ethyl diazoacetate, and that similar intermediates, by proton loss, give rise to vinylrhodium complexes from ethyl 2-diazopropionate or dimethyl diazosuccinate. As the rhodium porphyrin 409 is also an efficient catalyst for cyclopropanation of olefins with ethyl diazoacetate 87,1°°), stj bene formation from aryl diazomethanes 358 and carbene insertion into aliphatic C—H bonds 287, intermediates 418 or 419 are likely to be part of the mechanistic scheme of these reactions, too. [Pg.238]

The matter was settled in 1994 in back-to-back communications by Gould [12] and Dmitrienko [13]. Gould showed that treatment of natural prekinamycin with dirhodium tetraacetate in methanol yielded the fluorene 16 (Scheme 3.1). The vinyl proton formed in this reaction (H-l) provided a critical spectroscopic handle and allowed unambiguous determination of the carbocyclic structure, excluding the presence of an indole heterocycle. In parallel, his research group obtained a high-quality crystal structure of a kinamycin derivative. The refined data set was shown to best accommodate a diazo rather than cyanamide (or isonitrile) function. [Pg.42]

The ratio of isomeric ethers is strongly affected by polar substituents which induce an asymmetric distribution of charge in allylic cations. Photolysis of methyl 2-diazo-4-phenyl-3-butenoate (20) in methanol produced 24 in large excess over 25 as the positive charge of 22 resides mainly a to phenyl (Scheme 8).19 As would be expected, proton transfer to the electron-poor carbene 21 proceeds reluctantly intramolecular addition with formation of the cyclopropene... [Pg.5]

Enol ether additives were used to probe the protonation of 3-cyclopen-tenylidene (127). Treatment of A-nitroso-A-(2-vinylcyclopropyl)urea (124) with sodium methoxide generates 2-vinylcyclopropylidene (126) by way of the labile diazo compound 125 (Scheme 25). For simplicity, products derived directly from 126 (allene, ether, cycloadduct) are not shown in Scheme 25. The Skat-tebpl rearrangement of 126 generates 127 whose protonation leads to the 3-cyclopentenyl cation (128). In the presence of methanol, cyclopentadiene (130) and 3-methoxycyclopentene (132) were obtained.53 With an equimolar mixture of methyl vinyl ether and methanol, cycloaddition of 127 (—> 131)... [Pg.15]

When l-[diazo(methoxycarbonyl)acetyl]-2-oxopyrrolidine derivative 231 was treated with Rh2(pfm)4 (pfm = per-fluorobutyro amidate) in the presence of W-phenylmaleimide, none of the desired dipolar cycloadduct was formed but instead the acidic proton at C-3 in the isomiinchnone intermediate 232 was transferred, and the fused oxazoli-dinone 3-oxo-2,3,5,6-tetrahydropyrrolo[2,l- ]oxazole-2,7-dicarboxylic acid dimethyl ester 233 was isolated in 77% yield (Scheme 33) <1997JOC6842>. [Pg.74]


See other pages where Diazo protonation is mentioned: [Pg.426]    [Pg.427]    [Pg.772]    [Pg.917]    [Pg.566]    [Pg.250]    [Pg.72]    [Pg.104]    [Pg.316]    [Pg.333]    [Pg.339]    [Pg.359]    [Pg.134]    [Pg.447]    [Pg.1335]    [Pg.6]    [Pg.52]    [Pg.180]    [Pg.244]    [Pg.51]    [Pg.3]    [Pg.3]    [Pg.12]    [Pg.13]    [Pg.18]    [Pg.25]    [Pg.189]    [Pg.162]   
See also in sourсe #XX -- [ Pg.13 , Pg.86 , Pg.139 , Pg.140 , Pg.251 ]




SEARCH



Diazo compounds, alkylation protonation

© 2024 chempedia.info