Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazo-ketones preparation

Pettit and Nelson (1986) have designed an apparatus for diazo ketone preparation in which the carboxylic acid is first treated with oxalyl chloride dissolved in ether in one compartment. The acid chloride is formed after addition of triethylamine and a catalytic amount of dimethylformamide. Then the solution is filtered and added to ethereal diazomethane at -78°C in the second compartment. [Pg.388]

In order to prepare an acid, a dioxan solution of the diazo ketone is added slowly to a suspension of silver oxide in a dilute solution of sodium thiosulphate Iftheco)iversion to the acid yields unsatisfactory results, it is usually advisable to prepare the ester or amide, which are generally obtained in good yields hydrolysis of the derivative gives the free acid. [Pg.903]

Esters of the homologous acids are prepared by adding silver oxide in portions rather than in one lot to a hot solution or suspension of the diazo ketone in an anhydrous alcohol (methyl, ethyl or n-propyl alcohol) methanol is generally used and the silver oxide is reduced to metallic silver, which usually deposits as a mirror on the sides of the flask. The production of the ester may frequently be carried out in a homogeneous medium by treating a solution of the diazo ketone in the alcohol with a solution of silver benzoate in triethylamlne. [Pg.903]

Ethyl a-naphthylacetate is prepared as follows. To a solution of 10 g. of the diazo ketone in 150 ml. of ethanol at 55-60°, add a small amount of aslurry of silver oxide, prepared from 10 ml. of 10 per cent, aqueous silver nitrate and stirred with 25 ml. of ethanol. As soon as the evolution of nitrogen subsides, introduce more of the silver oxide and continue the process until all the slurry has been added. Reflux the mixture for 15 minutes, add 2-3 g. of decolourising carbon, filter and evaporate the alcohol on a water bath. Distil the residue and collect the ethyl a-naph-thylacetate at 176-178°/ 1 mm. the yield is 9 g. [Pg.905]

Diazo ketones are relatively easy to prepare (see 10-122). When treated with acid, they add a proton to give a-keto diazonium salts, which are hydrolyzed to the... [Pg.465]

When diazo ketones are treated with HBr or HCl, they give the respective a-halo ketones, but HI does not give the reaction, since it reduces the product to a methyl ketone (10-87). a-Fluoro ketones can be prepared by addition of the diazo ketone to polyhydrogen fluoride-pyridine. This method is also successful for diazoalkanes. [Pg.522]

The reaction between acyl halides and diazomethane is of wide scope and is the best way to prepare diazo ketones. Diazomethane must be present in excess or the HX produced will react with the diazo ketone (10-74). This reaction is the first step of the Amdt-Eistert synthesis (18-8). Diazo ketones can also be prepared directly from a carboxylic acid and diazomethane or diazoethane in the presence of dicyclohexyl-carbodiimide. ... [Pg.573]

Benzoyl groups are also selectively cleaved during diazo transfer. This method has been used to prepare diazo ketones and diazo esters.142... [Pg.912]

In more recent work, Chiu and co-workers [167, 168] have reported an intramolecular 1,3-dipolar cycloaddition approach toward the pseudolaric acids 85, in which the di-polarophile is an unactivated 1,1-disubstituted alkene. Hence, treatment of the diazo ketone 86 with catalytic Rh2(OAc)4 furnished a mixture of tricyclic products 87 and 88 in nearly equal proportions (Scheme 19.13). The synthesis of 2-pyridones [169] and their application to the ipalbidine core [170] has been described. The pentacyclic skeleton of the aspidosperma alkaloids was prepared via the cycloaddition of a push-pull carbonyl ylide [171]. The dehydrovindorosine alkaloids 89 have also been investigated, in which the a-diazo-/ -ketoester 90 undergoes a facile cycloaddition to furnish 91 in... [Pg.447]

Diazocycloalkanones with five- to twelve-membered rings can be synthesized by the present procedure in good yields (Table I).4 Diazo transfer with deformylation can also be used for the preparation of bicyclic a-diazo ketones.10,11 A related procedure involving reaction of the sodium salt of an a-(hydroxy methylene)-ketone with p-toluenesulfonyl azide in ethanol has been applied to the synthesis of diazoalkyl ketones, a-diazo aldehydes, and a-diazo carboxylic esters.12... [Pg.129]

The diazo ketones that are synthesized as intermediates are not only useful for the preparation of p-amino acids but may serve as versatile starting materials in different reactions, e.g. preparation of 3-azetidinones or 2-aminocyclopentanones. ... [Pg.228]

There are several isolated examples of conformationally constrained a-diazo ketones that, under catalysis by copper salts, smoothly undergo intramolecular C-H insertion37. Although investigated in some detail, this cyclization in the simple acyclic series was not found to be a preparatively useful synthetic method38. [Pg.1137]

In recent work67, it has been demonstrated that simple a-diazo ketones and esters can, in fact, be induced to undergo 1,5-insertion in preparatively useful yields. It was already known51 that in the rhodium-catalyzed insertion process, methyl C-H is electronically less reactive than methylene C-H or methine C-H. It therefore seemed likely that competing -hydride elimination would be least likely with a diazoethyl ketone. Indeed, on cyclization of 2-diazo-3-tetrade-canone, only a trace of the enone product from /J-hydride elimination is observed. The predominant side reaction competing with 1,5-insertion is dimer formation. [Pg.1145]

Appropriately substituted diazo ketones have been converted into oxetanes in two instances by Wolf rearrangement processes. The structure of compound (52) was established by X-ray crystallography (69MI51300, 81CSC345). Reaction of 4,4-dibromo-2,2,5,5-tetramethyltetrahydro-3-furanone with aqueous base is a good method of preparation for 3-hydroxy-2,2,4,4-tetramethyloxetane-3-carboxylic acid (equation 90) (66JA1242). [Pg.394]

Intramolecular carbene insertion (e.g. 1 —> 3) has long been a useful method for ring construction. Masahisa Nakada of Waseda University in Tokyo now reports (J. Am. Chem. Soc. 125 2860, 2003) that with the addition of the ligand 2 this process can be made highly enantioselective. As the starting diazo ketone 1 is easily prepared by diazo transfer to the sulfonyl ketone, this should allow facile entry to enantioenriched cyclopentanones and cyclohexanones. [Pg.31]

Diazo ketones are converted by amines into 1,2,3-triazoles and by hydrogen sulfide into 1,2,3-thiadiazoles (371 — 372 Z = NR, S). The intramolecular cyclization of suitable precursors is a most useful method for the preparation of the 1,2,3-triazole ring, including (V-amino- and (V-imino-triazoles and triazole N-oxides. [Pg.588]

Among the methods described in Section 10.6.5, the syntheses reported by Umezawa et alJ78 and Garcfa-Lopez et al.179,80 have been most widely used. As summarized in Scheme 33, the synthesis is initiated with the preparation of a diazo ketone through the reaction between a N-protected a-amino acid and isobutyl chloroformate followed by treatment with diazomethane. The chloromethyl ketone is prepared by adding 2.5 M hydrochloric acid to the diazo ketone. Transhalogenation is exploited to obtain the iodomethyl ketone. Through in situ reaction with the sodium derivative of dimethyl malonate, the 4-oxo diester is obtained. [Pg.394]

Diazocarbonyl compounds can also be prepared by C-acylation of diazoalkanes with polystyrene-bound acyl halides (Entry 6, Table 10.19). As an alternative to diazomethane, the more stable a-(trimethylsilyl)diazomethane may be used, which is sufficiently nucleophilic to react with acyl halides. On heating, the resulting a-(trimethyl-silyl)diazo ketones undergo Wolff rearrangement to yield ketenes, and have also been used as starting materials for the preparation of oxazoles [368]. [Pg.304]


See other pages where Diazo-ketones preparation is mentioned: [Pg.1406]    [Pg.1084]    [Pg.1599]    [Pg.1406]    [Pg.1084]    [Pg.1599]    [Pg.905]    [Pg.306]    [Pg.15]    [Pg.530]    [Pg.573]    [Pg.1250]    [Pg.905]    [Pg.565]    [Pg.30]    [Pg.109]    [Pg.621]    [Pg.154]    [Pg.445]    [Pg.495]    [Pg.978]    [Pg.5]    [Pg.905]    [Pg.304]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Diazo ketone

Diazo ketones, epoxy preparation

Ketones preparation

© 2024 chempedia.info