Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereoselectivity dipolarophiles

In addition to nitrones, azomethine ylides are also valuable 1,3-dipoles for five-membered heterocycles [415], which have found useful applications in the synthesis of for example, alkaloids [416]. Again, the groups of both Grigg [417] and Risch [418] have contributed to this field. As reported by the latter group, the treatment of secondary amines 2-824 with benzaldehyde and an appropriate dipolarophile leads to the formation of either substituted pyrrolidines 2-823, 2-825 and 2-826 or oxa-zolidines 2-828 with the 1,3-dipole 2-827 as intermediate (Scheme 2.184). However, the yields and the diastereoselectivities are not always satisfactory. [Pg.177]

When a-tethered nitroalkenes bearing three or four methylene chains and ester-activated dipolarophiles react with vinyl ethers, spiro mode tandem cycloaddition takes place to give tricyclic spiro nitroso acetals in good yield and high diastereoselectivity (Scheme 8.46).184... [Pg.295]

The third member of the tandem inter [4+2]/intra [3+2] cycloaddition family is classified as the bridge mode, in which the dipolarophile is attached to the dienophile. Simple, 1,4-pentadi-enes as well as 2-alkoxy-l,4-pentadienes can function effectively as dienophiles and dipolarophile combinations with excellent chemical selectivity and regio- and diastereoselectivity. Hydrogenation of the bridged nitroso acetals produces hydroxymethylated derivatives in high diastereo- and enantioselectivity (Eq. 8.116).185... [Pg.295]

Nitrone 1,3-DC reactions are still the most general approach to isoxazolidines. The stereocontrol is usually achieved by the use of chiral nitrones and/or dipolarophiles, but new interesting achievements on Lewis acid catalyzed cycloadditions are also frequently reported. Tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanatedionate) europium(III) [Eu(fod)3] selectively activated the Z-isomer of C-alkoxycarbonyl nitrone 75 existing as an E,Z-equilibrium mixture by forming the (Z)-75-Eu(fod)3 complex. (Z)-75-Eu(fod)3 reacted with electron-rich dipolarophiles such as vinyl ethers to give the trans-adducts with excellent diastereoselectivity <06T12227>. [Pg.296]

A systematic exploration of the intramolecular [4+2]/[3+2] cycloaddition cascade of 1,3,4-oxadiazoles was described. The studies permit the use of unsymmetrical dienophiles, dipolarophiles, and oxadiazoles as well as to control the cycloaddition regioselectivity and diastereoselectivity. The scope and utility of the reaction were defined <2006JA10589>. The tandem intramolecular [4+2]/[3+2] cycloaddition cascade reaction of 1,3,4-oxadiazole was applied to the syntheses of a series of natural products including a total synthesis of (-)- and ent-(+)-vindoline <2006JA10596>. [Pg.407]

A diastereoselective dipolar cycloaddition of chiral nitrone 80 with alkene dipolarophiles afforded imidazo[ 1,2-3]-isoaxazole (Scheme 9). The conversion via N-O reduction of this ring system with Raney-Ni in methanol gave the corresponding pyrrolo[l,2-A imidazole in 66% yield. The structure has been confirmed by X-ray diffraction crystal stmcture analysis <2000SL967>. [Pg.53]

In an analogous approach, the chiral stabilized azomethine ylide 165, generated in situ via Lewis acid-catalyzed condensation of (53 )-5-phenylmorpholin-2-one 164 with 2,2-dimethoxypropane, was trapped diastereoselectively with singly and doubly activated dipolarophiles such as the acrylate (Scheme 24). The cycloadduct 84 was then employed to furnish enantiomerically pure 5,5-dimethylproline derivatives (see Section 11.11.6.3), <2001SL1836>. [Pg.518]

This methodology has been applied to the diastereoselective synthesis of the pyrrolizidine alkaloid 196 from 194 via 195 (Scheme 15.62) [123], Furthermore, the diastereoselectivity of these reactions for different dipolarophiles has been investigated in detail [124] and could be extended to a ring closure to seven-membered nitrogen heterocycles [125,126]. [Pg.907]

Chiral bicyclic lactams have been successfully utilized by Meyers as chiral dipolarophiles in highly diastereoselective azomethine ylide cycloadditions (73). Treatment of the ylide precursor 218 with the unsaturated, non-racemic dipolar-ophile 219 in the presence of a catalytic amount of TFA led to the formation of tricyclic adducts 220 and 221 in excellent yields (85-100%). The diastereofacial preference for the reaction was dependent on the nature of R with a methyl group... [Pg.217]

The first diastereoselective synthesis of a tetrahydrothiophene derivative was reported by Karlsson and Hdgberg (32,95). The parent ylide la was added to a variety of C,C-dipolarophiles (79) bearing (—)-(15)-2,10-camphorsultam as the chiral auxiliary group to exclusively give trans-cycloadducts 80a,b with high diastereoselectivity [diastereomeric ratio (dr) 9 1], (Scheme 5.28). [Pg.334]

Extensive work has been done to determine and understand the factors controlling diastereoselectivity in the cycloaddition of nitrile oxides to alkenes but very little is known about nitrile ylides in this regard. Work on their reactions with alkenes that are geminally disubstituted with electron-withdrawing groups (e.g., 187) has illustrated some of the difficulties in such studies. When the imidoyl chloride-base route was used to generate the nitrile ylides it was found that the products 188 epimerized under the reaction conditions. When the azirine route was used, the reaction was complicated by the photochemical isomerization of the dipolarophiles (96,97). Thus, in both cases, it proved impossible to determine the kinetic product ratio. [Pg.501]

Although the first attempts at asymmetric azomethine ylide cycloadditions were reported by Padwa s group (92), the acyclic azomethine ylides chosen, bearing an a-chiral alkyl substituent on the nitrogen, showed poor diastereoselectivities (93,94). When the chiral center is fixed in a cyclic structure (95) or when chirality is introduced in an intramolecular cycloaddition system (96-98), high selectivities have been accomplished. There are only a few examples known of asymmetric cycloadditions of achiral azomethine ylides to chiral dipolarophiles where cyclic azomethine ylides (99,100) or cyclic chiral dipolarophiles (94) were used. [Pg.772]

A new dipolarophile bearing a chirality-controlling heterocyclic auxiliary at the p-position is readily accessible from (5)-A -benzylvalinol and methyl ( )-4-oxo-2-propenoate. However, the dipolarophile is available only as an 86 14 equilibrium mixture of trans and cis stereoisomers (Scheme 11.20) (84). When this is used without separation in the reaction with the Al-hthiated azomethine ylide derived from methyl (benzylideneamino)acetate in THE at 78 °C for 3.5 h, a mixture of two diastereomeric cycloadducts (75 25) was obtained in 82% yield. These two cycloadducts are derived from the trans and cis isomers of acceptor, indicating that both cycloadditions were highly diastereoselective. [Pg.772]

Yamamoto and co-workers (135,135-137) recently reported a new method for stereocontrol in nitrile oxide cycloadditions. Metal ion-catalyzed diastereoselective asymmetric reactions using chiral electron-deficient dipolarophiles have remained unreported except for reactions using a-methylene-p-hydroxy esters, which were described in Section 11.2.2.6. Although synthetically very useful and, hence, attractive as an entry to the asymmetric synthesis of 2-isoxazohnes, the application of Lewis acid catalysis to nitrile oxide cycloadditions with 4-chiral 3-(2-aIkenoyl)-2-oxazolidinones has been unsuccessful, even when > 1 equiv of Lewis acids are employed. However, as shown in the Scheme 11.37, diastereoselectivities in favor of the ffc-cycloadducts are improved (diastereomer ratio = 96 4) when the reactions are performed in dichloromethane in the presence of 1 equiv of MgBr2 at higher than normal concentrations (0.25 vs 0.083 M) (140). The Lewis acid... [Pg.789]

Acetyl-2(3//)-oxazolone 84 serves as a good 1,3-dipolarophile in the [3+2] cycloaddition to A-alkyl-a-phenylnitrones 239, giving a mixture of the four possible isomers 240-243, but with the predominant formation of the exo-syn adduct 240 (Fig. 5.59). Diastereoselective cycloadditions proceed when mixtures of optically active 3-(2-exo-alkoxy-l-apocamphanecarbonyl)-2(3/7)-oxazolones and A-benzyl- and A-ferf-butyl-a-phenylnitrones are heated at 110 °C ... [Pg.35]


See other pages where Diastereoselectivity dipolarophiles is mentioned: [Pg.233]    [Pg.433]    [Pg.54]    [Pg.58]    [Pg.297]    [Pg.169]    [Pg.934]    [Pg.46]    [Pg.50]    [Pg.217]    [Pg.439]    [Pg.33]    [Pg.193]    [Pg.204]    [Pg.376]    [Pg.429]    [Pg.779]    [Pg.788]    [Pg.889]    [Pg.103]    [Pg.160]    [Pg.43]    [Pg.300]    [Pg.353]    [Pg.429]    [Pg.626]    [Pg.633]    [Pg.635]   
See also in sourсe #XX -- [ Pg.857 , Pg.858 , Pg.859 ]




SEARCH



Diastereoselectivity chiral dipolarophiles

Dipolarophile

© 2024 chempedia.info