Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereoselectivity azomethine ylides

For azomethine ylides and carbonyl ylides, the diastereoselectivity is more complex as the presence of an additional chiral center in the product allows for the formation of four diastereomers. Since the few reactions that are described in this chapter of these dipoles give rise to only one diastereomer, this topic will not be mentioned further here [10]. [Pg.217]

In addition to nitrones, azomethine ylides are also valuable 1,3-dipoles for five-membered heterocycles [415], which have found useful applications in the synthesis of for example, alkaloids [416]. Again, the groups of both Grigg [417] and Risch [418] have contributed to this field. As reported by the latter group, the treatment of secondary amines 2-824 with benzaldehyde and an appropriate dipolarophile leads to the formation of either substituted pyrrolidines 2-823, 2-825 and 2-826 or oxa-zolidines 2-828 with the 1,3-dipole 2-827 as intermediate (Scheme 2.184). However, the yields and the diastereoselectivities are not always satisfactory. [Pg.177]

When reacted with electron-rich enamines f ,)-R12N-CH=CH-Me, stable azomethine ylides 214 <1999T9515> undergo regioselective 1,3-dipolar cycloadditions giving rise to tetrahydropyrrolizines 215 as mixtures of cis- and trans-isomers with poor diastereoselectivity, which is an argument in favor of a two-step instead of a concerted mechanism (Scheme 51) <1999T9535>. [Pg.27]

In an analogous approach, the chiral stabilized azomethine ylide 165, generated in situ via Lewis acid-catalyzed condensation of (53 )-5-phenylmorpholin-2-one 164 with 2,2-dimethoxypropane, was trapped diastereoselectively with singly and doubly activated dipolarophiles such as the acrylate (Scheme 24). The cycloadduct 84 was then employed to furnish enantiomerically pure 5,5-dimethylproline derivatives (see Section 11.11.6.3), <2001SL1836>. [Pg.518]

Chiral bicyclic lactams have been successfully utilized by Meyers as chiral dipolarophiles in highly diastereoselective azomethine ylide cycloadditions (73). Treatment of the ylide precursor 218 with the unsaturated, non-racemic dipolar-ophile 219 in the presence of a catalytic amount of TFA led to the formation of tricyclic adducts 220 and 221 in excellent yields (85-100%). The diastereofacial preference for the reaction was dependent on the nature of R with a methyl group... [Pg.217]

Planar chiral arene Cr(CO)3 complexes have been shown to undergo highly diastereoselective cycloadditions and Kiindig has extended this protocol to the [3+2] cycloadditions of azomethine ylides (96). Enantiopure ortho- substituted p -benzaldehyde complex 337 underwent condensation with an ot-amino ester to afford imine 338 in the presence of EtaN. Subsequent treatment with methyl acrylate at ambient temperamre in the presence of LiBr and EtaN delivered cycloadduct 339, with excellent stereoinduction and high material yield. Photoinduced oxidative decomplexation in air furnished the final arylpyrrolidines (Scheme 3.114). [Pg.243]

Although the first attempts at asymmetric azomethine ylide cycloadditions were reported by Padwa s group (92), the acyclic azomethine ylides chosen, bearing an a-chiral alkyl substituent on the nitrogen, showed poor diastereoselectivities (93,94). When the chiral center is fixed in a cyclic structure (95) or when chirality is introduced in an intramolecular cycloaddition system (96-98), high selectivities have been accomplished. There are only a few examples known of asymmetric cycloadditions of achiral azomethine ylides to chiral dipolarophiles where cyclic azomethine ylides (99,100) or cyclic chiral dipolarophiles (94) were used. [Pg.772]

A new dipolarophile bearing a chirality-controlling heterocyclic auxiliary at the p-position is readily accessible from (5)-A -benzylvalinol and methyl ( )-4-oxo-2-propenoate. However, the dipolarophile is available only as an 86 14 equilibrium mixture of trans and cis stereoisomers (Scheme 11.20) (84). When this is used without separation in the reaction with the Al-hthiated azomethine ylide derived from methyl (benzylideneamino)acetate in THE at 78 °C for 3.5 h, a mixture of two diastereomeric cycloadducts (75 25) was obtained in 82% yield. These two cycloadducts are derived from the trans and cis isomers of acceptor, indicating that both cycloadditions were highly diastereoselective. [Pg.772]

One problem in the anti-selective Michael additions of A-metalated azomethine ylides is ready epimerization after the stereoselective carbon-carbon bond formation. The use of the camphor imines of ot-amino esters should work effectively because camphor is a readily available bulky chiral ketone. With the camphor auxiliary, high asymmetric induction as well as complete inhibition of the undesired epimerization is expected. The lithium enolates derived from the camphor imines of ot-amino esters have been used by McIntosh s group for asymmetric alkylations (106-109). Their Michael additions to some a, p-unsaturated carbonyl compounds have now been examined, but no diastereoselectivity has been observed (108). It is also known that the A-pinanylidene-substituted a-amino esters function as excellent Michael donors in asymmetric Michael additions (110). Lithiation of the camphor... [Pg.774]

The stereochemistry of 1,3-dipolar cycloadditions of azomethine ylides with alkenes is more complex. In this reaction, up to four new chiral centers can be formed and up to eight different diastereomers may be obtained (Scheme 12.4). There are three different types of diastereoselectivity to be considered, of which the two are connected. First, the relative geometry of the terminal substituents of the azomethine ylide determine whether the products have 2,5-cis or 2,5-trans conformation. Most frequently the azomethine ylide exists in one preferred configuration or it shifts between two different forms. The addition process can proceed in either an endo or an exo fashion, but the possible ( ,Z) interconversion of the azomethine ylide confuses these terms to some extent. The endo-isomers obtained from the ( , )-azomethine ylide are identical to the exo-isomers obtained from the (Z,Z)-isomer. Finally, the azomethine ylide can add to either face of the alkene, which is described as diastereofacial selectivity if one or both of the substrates are chiral or as enantioselectivity if the substrates are achiral. [Pg.821]

Other chiral azomethine ylide precursors such as 2-(ferf-butyl)-3-imidazolidin-4-one have been tested as chiral controllers in 1,3-dipolar cycloadditions (89). 2-(ferf-Butyl)-3-imidazolidin-4-one reacted with various aldehydes to produce azomethine ylides, which then were subjected to reaction with a series of different electron-deficient alkenes to give the 1,3-dipolar cycloaddition products in moderate diastereoselectivity of up to 60% de. [Pg.831]

Chiral aziridines having the chiral moiety attached to the nitrogen atom have also been applied for diastereoselective formation of optically active pyrrolidine derivatives. In the first example, aziridines were used as precursors for azomethine ylides (90-95). Photolysis of the aziridine 57 produced the azomethine ylide 58, which was found to add smoothly to methyl acrylate (Scheme 12.20) (91,93-95). The 1,3-dipolar cycloaddition proceeded with little or no de, but this was not surprising, as the chiral center in 58 is somewhat remote from the reacting centers... [Pg.831]

Meyers and co-workers (143-146) studied the addition of azomethine ylides to the chiral bicychc half-aminal 97 (Scheme 12.32). The diastereoselectivities of these reactions were highly dependent on the substituents of both 97 and... [Pg.839]

Diastereoselective reactions of azomethine ylides with chiral vinyl sulfoxides have also been conducted (Scheme 12.35) (162-164). The 1,3-dipolar cycloaddition of (R)s-p-tolyl vinyl sulfoxide (106) with l-methyl-3-oxidopyridinum (105) gave three of the four possible diastereomers, and one of these isomers 107 was used for the enantioselective synthesis of the (75)-(—)-2a-tropanol 108 (162). [Pg.841]

Chiral exocyclic alkenes such as 112, also having the chiral center two bonds away from the reacting alkene moiety, have been used in highly diastereoselective reactions with azomethine ylides, and have been used as the key reaction for the asymmetric synthesis of (5)-(—)-cucurbitine (Scheme 12.37) (169). The aryl sulfone 113 was used in a 1,3-dipolar cycloaddition reaction with acyclic nitrones. In 113, the chiral center is located four bonds apart from alkene, and as a result, only moderate diastereoselectivities of 36-56% de were obtained in these reactions (170). [Pg.843]

For intramolecular 1,3-dipolar cycloadditions, the application of nitrones and nitrile oxides is by far most common. However, in increasing frequency, cases intramolecular reactions of azomethine ylides (76,77,242-246) and azides (247-259) are being reported. The previously described intermolecular approach developed by Harwood and co-workers (76,77) has been extended to also include intramolecular reactions. The reaction of the chiral template 147 with the alkenyl aldehyde 148 led to the formation of the azomethine ylide 149, which underwent an intramolecular 1,3-dipolar cycloaddition to furnish 150 (Scheme 12.49). The reaction was found to proceed with high diastereoselectivity, as only one diaster-eomer of 150 was formed. By a reduction of 150, the proline derivative 151 was obtained. [Pg.850]

The amino acid derived chiral oxazolidinone 188 is a very commonly used auxiliary in Diels-Alder and aldol reactions. However, its use in diastereoselective 1,3-dipolar cycloadditions is less widespread. It has, however, been used with nitrile oxides, nitrones, and azomethine ylides. In reactions of 188 (R = Bn, R =Me, R = Me) with nitrile oxides, up to 92% de have been obtained when the reaction was performed in the presence of 1 equiv of MgBr2 (303). In the absence of a metal salt, much lower selectivities were obtained. The same observation was made for reactions of 188 (R = Bn, R = H, R = Me) with cyclic nitrones in an early study by Murahashi et al. (277). In the presence of Znl2, endo/exo selectivity of 89 11 and up to 92% de was observed, whereas in the absence of additives, low selectivities resulted. In more recent studies, it has been shown for 188 (R =/-Pr, R = H, R =Me) that, in the presence of catalytic amounts of Mgl2-phenanthroline (10%) (16) or Yb(OTf)3(20%) (304), the reaction with acyclic nitrones proceeded with high yields and stereoselectivity. Once again, the presence of the metal salt was crucial for the reaction no reaction was observed in their absence. Various derivatives of 188 were used in reactions with an unsubstituted azomethine ylide (305). This reaction proceeded in the absence of metal salts with up to 60% de. The presence of metal salts led to decomposition of the azomethine ylide. [Pg.857]


See other pages where Diastereoselectivity azomethine ylides is mentioned: [Pg.73]    [Pg.305]    [Pg.773]    [Pg.776]    [Pg.829]    [Pg.836]    [Pg.844]    [Pg.858]    [Pg.889]    [Pg.4]    [Pg.620]    [Pg.623]    [Pg.675]    [Pg.682]    [Pg.690]    [Pg.704]   
See also in sourсe #XX -- [ Pg.829 , Pg.830 , Pg.831 , Pg.832 ]




SEARCH



© 2024 chempedia.info