Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Details interface

One style of collaboration, with low level of interaction is illustrated in Fig. 1. The vehicle manufacturer provides high level requirements together with a limited but detailed interface specification in the early engineering phase. In the early phase, modified models are exchanged as a handshake, but not until the end of development, the supplier comes back with a component implementation. [Pg.56]

With this reference model in mind, the kind of information exchanged in the early phase would be requirements, use cases and vehicle features from vehicle level, to characterize the high level requirements. In the same phase, some of the detailed interfacing requirements would be known which can be captured by AUTOSAR elements on the Implementation level and complemented with texmal requirements. [Pg.57]

Finally, fhe application of higher order nonlinear optical processes such as third-harmonic generation (Berkovic 1995 Tsang 1995) or fourth-harmonic generation (Lee et al. 1997) could provide even more detailed interface information. For example, in the case of fourth-harmonic generation the induced polarization is given by Pj 4u>) = j k,l,m,nx]tL Ek u>)Ei co)Em u>)E io), i.e., the hyperpolarizability is a tensor of rank 5. Hence if is possible fo resolve up to five-fold surface symmetries. However, the absolute values are... [Pg.167]

The topic of capillarity concerns interfaces that are sufficiently mobile to assume an equilibrium shape. The most common examples are meniscuses, thin films, and drops formed by liquids in air or in another liquid. Since it deals with equilibrium configurations, capillarity occupies a place in the general framework of thermodynamics in the context of the macroscopic and statistical behavior of interfaces rather than the details of their molectdar structure. In this chapter we describe the measurement of surface tension and present some fundamental results. In Chapter III we discuss the thermodynamics of liquid surfaces. [Pg.4]

The idea that unsymmetrical molecules will orient at an interface is now so well accepted that it hardly needs to be argued, but it is of interest to outline some of the history of the concept. Hardy [74] and Harkins [75] devoted a good deal of attention to the idea of force fields around molecules, more or less intense depending on the polarity and specific details of the structure. Orientation was treated in terms of a principle of least abrupt change in force fields, that is, that molecules should be oriented at an interface so as to provide the most gradual transition from one phase to the other. If we read interaction energy instead of force field, the principle could be reworded on the very reasonable basis that molecules will be oriented so that their mutual interaction energy will be a maximum. [Pg.64]

We have considered the surface tension behavior of several types of systems, and now it is desirable to discuss in slightly more detail the very important case of aqueous mixtures. If the surface tensions of the separate pure liquids differ appreciably, as in the case of alcohol-water mixtures, then the addition of small amounts of the second component generally results in a marked decrease in surface tension from that of the pure water. The case of ethanol and water is shown in Fig. III-9c. As seen in Section III-5, this effect may be accounted for in terms of selective adsorption of the alcohol at the interface. Dilute aqueous solutions of organic substances can be treated with a semiempirical equation attributed to von Szyszkowski [89,90]... [Pg.67]

The detailed examination of the behavior of light passing through or reflected by an interface can, in principle, allow the determination of the monolayer thickness, its index of refiraction and absorption coefficient as a function of wavelength. The subjects of ellipsometry, spectroscopy, and x-ray reflection deal with this goal we sketch these techniques here. [Pg.126]

In recent years, advances in experimental capabilities have fueled a great deal of activity in the study of the electrified solid-liquid interface. This has been the subject of a recent workshop and review article [145] discussing structural characterization, interfacial dynamics and electrode materials. The field of surface chemistry has also received significant attention due to many surface-sensitive means to interrogate the molecular processes occurring at the electrode surface. Reviews by Hubbard [146, 147] and others [148] detail the progress. In this and the following section, we present only a brief summary of selected aspects of this field. [Pg.202]

There is always some degree of adsorption of a gas or vapor at the solid-gas interface for vapors at pressures approaching the saturation pressure, the amount of adsorption can be quite large and may approach or exceed the point of monolayer formation. This type of adsorption, that of vapors near their saturation pressure, is called physical adsorption-, the forces responsible for it are similar in nature to those acting in condensation processes in general and may be somewhat loosely termed van der Waals forces, discussed in Chapter VII. The very large volume of literature associated with this subject is covered in some detail in Chapter XVII. [Pg.350]

Many complex systems have been spread on liquid interfaces for a variety of reasons. We begin this chapter with a discussion of the behavior of synthetic polymers at the liquid-air interface. Most of these systems are linear macromolecules however, rigid-rod polymers and more complex structures are of interest for potential optoelectronic applications. Biological macromolecules are spread at the liquid-vapor interface to fabricate sensors and other biomedical devices. In addition, the study of proteins at the air-water interface yields important information on enzymatic recognition, and membrane protein behavior. We touch on other biological systems, namely, phospholipids and cholesterol monolayers. These systems are so widely and routinely studied these days that they were also mentioned in some detail in Chapter IV. The closely related matter of bilayers and vesicles is also briefly addressed. [Pg.537]

Below are brief descriptions of some of the particle-surface interactions important in surface science. The descriptions are intended to provide a basic understanding of how surfaces are probed, as most of the infonuation that we have about surfaces was obtained tluough the use of techniques that are based on such interactions. The section is divided into some general categories, and the important physics of the interactions used for analysis are emphasized. All of these teclmiques are described in greater detail in subsequent sections of the encyclopaedia. Also, note that there are many more teclmiques than just those discussed here. These particular teclmiques were chosen not to be comprehensive, but instead to illustrate the kind of infonuation that can be obtained from surfaces and interfaces. [Pg.305]

In this section we discuss the frequency spectrum of excitations on a liquid surface. Wliile we used linearized equations of hydrodynamics in tire last section to obtain the density fluctuation spectrum in the bulk of a homogeneous fluid, here we use linear fluctuating hydrodynamics to derive an equation of motion for the instantaneous position of the interface. We tlien use this equation to analyse the fluctuations in such an inliomogeneous system, around equilibrium and around a NESS characterized by a small temperature gradient. More details can be found in [9, 10]. [Pg.725]

Lamellar morphology variables in semicrystalline polymers can be estimated from the correlation and interface distribution fiinctions using a two-phase model. The analysis of a correlation function by the two-phase model has been demonstrated in detail before [30,11] The thicknesses of the two constituent phases (crystal and amorphous) can be extracted by several approaches described by Strobl and Schneider [32]. For example, one approach is based on the following relationship ... [Pg.1407]

The classical architecture of an expert system comprises a knowledge base, an inference engine, and some kind of user interface. Most expert systems also include an explanation subsystem and a knowledge acquisition subsystem. This architecture is given in Figure 9-34 and described in more detail below. [Pg.478]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

Nested wells can also be used to analyze multilayer aquifer flow. There are many situations involving interaquifer transport owing to leaky boundaries between the aquifers. The primary case of interest involves the vertical transport of fluid across a horizontal semipermeable boundary between two or more aquifers. Figure 4 sets out the details of this type of problem. Unit 1 is a phraetic aquifer, bound from below by two confined aquifers, having semipermeable formations at each interface. [Pg.403]

Langmuir-Blodgett was the first technique to provide a practical route for the constmction of ordered molecular assembhes. These monolayers, which provide design dexibiUty both at the individual molecular and at the material levels, are prepared at the water—air interface using a hiUy computerized trough (Fig. 1). Detailed discussions of troughs (4) and of surface pressure, 7T, and methods of surface pressure measurements are available (3,6). [Pg.531]


See other pages where Details interface is mentioned: [Pg.117]    [Pg.206]    [Pg.142]    [Pg.128]    [Pg.270]    [Pg.26]    [Pg.166]    [Pg.117]    [Pg.206]    [Pg.142]    [Pg.128]    [Pg.270]    [Pg.26]    [Pg.166]    [Pg.850]    [Pg.1]    [Pg.69]    [Pg.101]    [Pg.281]    [Pg.362]    [Pg.398]    [Pg.899]    [Pg.1214]    [Pg.1385]    [Pg.1407]    [Pg.1409]    [Pg.1889]    [Pg.1949]    [Pg.2364]    [Pg.2374]    [Pg.2748]    [Pg.2749]    [Pg.2866]    [Pg.2938]    [Pg.629]    [Pg.191]    [Pg.167]    [Pg.177]    [Pg.204]    [Pg.513]    [Pg.531]   
See also in sourсe #XX -- [ Pg.296 ]




SEARCH



Interface Events in Detail

© 2024 chempedia.info