Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Deposition electrode materials

Much attention, particularly among the Russian workers, has been given to the applicability of the Heyrovsky-Ilkovic versus the Kolthoff-Lingane equation for electrode reactions involving metal deposition. In practice, one plots the electrode potential versus log[(/i — /)//] or log(/ — i) and examines the linearity of the plot and also the value of the slope (theoretically 2.3RTjnF). It is expected that the Heyrovsky-Ilkovic equation should be applicable when alloy formation with the electrode material takes place and the metal formed diffuses away from the surface so that its surface activity is a function of the current density. Alloying and diffusion in the electrode will be functions of the metal deposited, electrode material, temperature, and the rate of deposition (current density) therefore, comparison is difficult or meaningless if several of these variables are varied simultaneously. [Pg.201]

Polysilicon. Polysihcon is used as the gate electrode material in MOS devices, as a conducting material for multilevel metallization, and as contact material for devices having shallow junctions. It is prepared by pyrolyzing silane, SiH, at 575—650°C in a low pressure reactor. The temperature of the process affects the properties of the final film. Higher process temperatures increase the deposition rate, but degrade the uniformity of the layer. Lower temperatures may improve the uniformity, but reduce the throughput to an impractical level. [Pg.348]

A thin layer deposited between the electrode and the charge transport material can be used to modify the injection process. Some of these arc (relatively poor) conductors and should be viewed as electrode materials in their own right, for example the polymers polyaniline (PAni) [81-83] and polyethylenedioxythiophene (PEDT or PEDOT) [83, 841 heavily doped with anions to be intrinsically conducting. They have work functions of approximately 5.0 cV [75] and therefore are used as anode materials, typically on top of 1TO, which is present to provide lateral conductivity. Thin layers of transition metal oxide on ITO have also been shown [74J to have better injection properties than ITO itself. Again these materials (oxides of ruthenium, molybdenum or vanadium) have high work functions, but because of their low conductivity cannot be used alone as the electrode. [Pg.537]

Oxides of various metals are a broad class of electrode materials useful in many electrochemical processes (Trasatti, 1980-1981). The surfaces of practically all metals (both base and noble) become covered by layers of chemisorbed oxygen upon anodic polarization. The composition and properties of these layers depend on potential, on the electrolyte, and on the electrolysis conditions. They are often rather thick and have a distinct phase character, so that the metal electrode is converted to a typical oxide electrode. One can also make electrodes directly from oxides deposited in some way or other on various conducting substrates. [Pg.544]

In the following chapter examples of XPS investigations of practical electrode materials will be presented. Most of these examples originate from research on advanced solid polymer electrolyte cells performed in the author s laboratory concerning the performance of Ru/Ir mixed oxide anode and cathode catalysts for 02 and H2 evolution. In addition the application of XPS investigations in other important fields of electrochemistry like metal underpotential deposition on Pt and oxide formation on noble metals will be discussed. [Pg.91]

The catalytic properties of a Pt/Sn combination were observed on different kinds of electrode materials alloys [90], electro co-deposits of Pt and Sn [89, 90], underpotential deposited tin [42] or a mixture of tin oxide and platinum deposited on glass [95], All different materials present a marked influence on methanol electrooxidation. [Pg.161]

Aniline. Aniline black is a well known polymer of aniline formed by electrophilic additionf3.41. Numerous investigators have formed poly(aniline) films by anodic deposition of Pt and other electrode materials. We have examined the interaction of aniline with clean Ni(lll) and Ni(100) surfaces in ultrahigh vacuum and found aniline to form an orientationally ordered, thermally stable polymer film. Electrochemically prepared poly(aniline) films also show the high degree of orientational ordering. [Pg.89]

Qiu, J.-D., et al., Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chemistry - A European Journal, 2012.18(25) p. 7950-7959. [Pg.162]

Au is an excellent electrode material. It is inert in most electrochemical environments, and its surface chemistry is moderately well understood. It is not, however, the substrate of choice for the epitaxial formation of most compounds. One major problem with Au is that it is not well lattice matched with the compounds being deposited. There are cases where fortuitous lattice matches are found, such as with CdSe on Au(lll), where the Vs times the lattice constant of CdSe match up with three times the Au (Fig. 63B) [115,125]. However, there is still a 0.6% mismatch. A second problem has to do with formation of a compound on an elemental substrate (Fig. 65) [384-387]. Two types of problems are depicted in Fig. 65. In Fig. 65A the first element incompletely covers the surface, so that when an atomic layer of the second element is deposited, antiphase boundaries result on the surface between the domains. These boundaries may then propagate as the deposit grows. In Fig. 65b the presence of an atomically high step in the substrate is seen to also promote the formation of antiphase boundaries. The first atomic layer is seen to be complete in this case, but when an atomic layer of the second element is deposited on top, a boundary forms at the step edge. Both of the scenarios in Fig. 65 are avoided by use of a compound substrate. [Pg.180]

Various strategies are used to produce electrode structures within the membrane pores, including sol—gel synthesis, CVD, eiectrodeposition, and electroless deposition. With careful control of the synthetic conditions, the pores are either filled completely or preferentially coated at the pore walls, producing hollow tubes (see Figure 10b). Following infiltration with the desired electrode material, the membrane is subsequently removed under conditions that do not disturb the active material, leaving an array of either solid nanofibers or nanotubes attached to a current collector like the bristles of a brush (Figure 11). In this case there is very limited interconnectedness between the nanofibers, except at the current collector base. [Pg.236]


See other pages where Deposition electrode materials is mentioned: [Pg.522]    [Pg.44]    [Pg.183]    [Pg.281]    [Pg.70]    [Pg.96]    [Pg.163]    [Pg.334]    [Pg.136]    [Pg.184]    [Pg.62]    [Pg.343]    [Pg.1319]    [Pg.15]    [Pg.115]    [Pg.371]    [Pg.116]    [Pg.263]    [Pg.302]    [Pg.307]    [Pg.45]    [Pg.85]    [Pg.97]    [Pg.170]    [Pg.182]    [Pg.121]    [Pg.228]    [Pg.590]    [Pg.615]    [Pg.219]    [Pg.7]    [Pg.132]    [Pg.828]    [Pg.959]    [Pg.293]    [Pg.220]    [Pg.320]    [Pg.522]    [Pg.66]    [Pg.797]    [Pg.326]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Electrode deposition

Electrode material

Material deposition

© 2024 chempedia.info