Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dependence on base concentration

Major differences were noted between the systems derived from Fe(CO)c and M(CO) (M = Cr, Mo, and W) with respect to the effect of the base concentration on the reaction rate. Thus in the case of the catalyst system derived from Fe(CO)5 tripling the amount of KOH while keeping constant the amounts of the other reactants had no significant effect on the rate of H2 production (11). However, in the case of the catalyst system derived from W(CO)g the rate of production increased as the amount of base was increased regardless of whether the base was KOH, sodium formate, or triethylamine (12). This increase may be interpreted as a first order dependence on base concentration provided some solution non-ideality is assumed at high base concentrations. Similar observations were made for the base dependence of H2 production in catalyst systems derived from the other metal hexacarbonyls Cr(CO) and Mo(CO) (12). Thus the water gas shift catalyst system derived from Fe(CO)5 has an apparent zero order base dependence whereas the water gas shift catalyst systems derived from M(CO)g (M - Cr, Mo, and W) have an approximate first order base dependence. Any serious mechanistic proposals must accommodate these observations. [Pg.129]

Dependence on Base Concentration. The dissolution rates of substituted PHHPs at different alkali concentrations are displayed 1n Figure 1 for seven different novolac resins. In each case, there appears to be a limiting concentration C0 below which the rate of dissolution 1s too slow to be measured 1n the experimental time scale. The ascending portion of the curve can be represented by a power law dependence of the rate on concentration C, eq.(1),... [Pg.367]

SE3-mechanism a linear rate dependence on base concentration is to be expected, whereas a less-than-linear relation results for the steady-state mechanism. [Pg.166]

FIGURE 16.11 Specific and general acid-base catalysis of simple reactions in solution may be distinguished by determining the dependence of observed reaction rate constants (/sobs) pH and buffer concentration, (a) In specific acid-base catalysis, or OH concentration affects the reaction rate, is pH-dependent, but buffers (which accept or donate H /OH ) have no effect, (b) In general acid-base catalysis, in which an ionizable buffer may donate or accept a proton in the transition state, is dependent on buffer concentration. [Pg.511]

So far, we have seen qualitatively that hydronium ions are always present in water and that, in an aqueous solution of an acid or base, the concentration of H50 + ions depends on the concentration of solute. The time has come for us to express this concentration quantitatively and to see how it depends on the concentration of acid or base in solution. A minor difficulty is that the concentration of H30+ ions can vary over many orders of magnitude in some solutions, it is higher than... [Pg.522]

A model developed by Leksawasdi et al. [11,12] for the enzymatic production of PAC (P) from benzaldehyde (B) and pyruvate (A) in an aqueous phase system is based on equations given in Figure 2. The model also includes the production of by-products acetaldehyde (Q) and acetoin (R). The rate of deactivation of PDC (E) was shown to exhibit a first order dependency on benzaldehyde concentration and exposure time as well as an initial time lag [8]. Following detailed kinetic studies, the model including the equation for enzyme deactivation was shown to provide acceptable fitting of the kinetic data for the ranges 50-150 mM benzaldehyde, 60-180 mM pyruvate and 1.1-3.4 U mf PDC carboligase activity [10]. [Pg.25]

The iridium complex 35 has been also used as catalyst for the transfer hydrogenation of substituted nitroarenes [34]. Good to very good conversions were observed (2.5 mol%, in refluxing isopropanol, 12 h). A mixture of two products was obtained, the relative ratio of which depends on the concentration of added base (KOH) and catalyst. (Scheme 2.5)... [Pg.31]

Figure 6.8 shows the Bjerrum plots for an weak acid (benzoic acid, pKa 3.98, log So — 1.55, log mol/L [474]), a weak base (benzydamine, pKa 9.26, log So —3.83, log mol/L [472]), and an ampholyte (acyclovir, pKa 2.34 and 9.23, log So — 2.16, log mol/L I/40N ). These plots reveal the pKa and pA pp values as the pcH values at half-integral % positions. By simple inspection of the dashed curves in Fig. 6.8, the pKa values of the benzoic acid, benzydamine, and acyclovir are 4.0, 9.3, and (2.3, 9.2), respectively. The pA pp values depend on the concentrations used, as is evident in Fig. 6.8. It would not have been possible to deduce the constants by simple inspection of the titration curves (pH vs. volume of titrant, as in Fig. 6.7). The difference between pKa and pA pp can be used to determine log So, the intrinsic solubility, or log Ksp, the solubility product of the salt, as will be shown below. Figure 6.8 shows the Bjerrum plots for an weak acid (benzoic acid, pKa 3.98, log So — 1.55, log mol/L [474]), a weak base (benzydamine, pKa 9.26, log So —3.83, log mol/L [472]), and an ampholyte (acyclovir, pKa 2.34 and 9.23, log So — 2.16, log mol/L I/40N ). These plots reveal the pKa and pA pp values as the pcH values at half-integral % positions. By simple inspection of the dashed curves in Fig. 6.8, the pKa values of the benzoic acid, benzydamine, and acyclovir are 4.0, 9.3, and (2.3, 9.2), respectively. The pA pp values depend on the concentrations used, as is evident in Fig. 6.8. It would not have been possible to deduce the constants by simple inspection of the titration curves (pH vs. volume of titrant, as in Fig. 6.7). The difference between pKa and pA pp can be used to determine log So, the intrinsic solubility, or log Ksp, the solubility product of the salt, as will be shown below.
The magnitudes of the rate constants for the iridium catalyst were close to those obtained for rhodium 3 and osmium 5 based catalyst systems at similar conditions. However, the unusual dependence on catalyst concentration affects its general utility in comparison to other homogeneous catalysts for the hydrogenation of NBR. [Pg.127]

H30+ and OH-. Reactions that are dependent on the concentrations of HXt and X- are categorized as involving general acid and general base catalysis. Table 7.1, adapted from Ashmore (30), indicates a number of catalytic reactions of the specific and general acid-base types in order to provide some orientation as to the types of reactions in the various categories. A thorough discussion of these reactions is obviously... [Pg.222]

The photosensitized results are from I.B.C. Matheson and J. Lee 118h It is seen that the quantum yields in photosensitized oxidation depend on the concentrations of luminol and base, and on temperature. At higher temperature (50°) and low luminol concentrations, the quantum yields reached those of hemin-catalyzed hydrogen peroxide oxidation of luminol in aqueous-alkaline solution. Primary products of the photosensitized oxidation are singlet oxygen (1Ag02) or a photoperoxide derived from methylene blue, but neither of these is directly responsible for the luminol chemiluminescence. [Pg.104]

Surprisingly, the polymerization rate has practically a zeroth-order dependence on the concentration of the monomer, which is a rare example for a group 4 metal-based catalyst. Although the reason for the zeroth-order dependence is unclear at the current time, one possible explanation is that, under the conditions examined, the cationic complex virtually exists as a (higher a-olefm)-coordinated form, presumably due to the highly electrophilic and sterically open nature of the cationic active species. [Pg.27]

In a later work, Stokes established the relationship between the intensity of fluorescence and the concentration, pointing out that the emission intensity depended on the concentration of the sample (analyte), but that attenuation of the signal occurred at higher concentrations as well as in the presence of foreign substances. He actually was the first to propose, in 1864, the application of fluorescence as an analytical tool, based on its sensitivity, on the occasion of a conference given previously in the Chemical Society and the Royal Institution, and entitled On the Application of the Optical Properties to the Detection and Discrimination of Organic Substances [5],... [Pg.6]


See other pages where Dependence on base concentration is mentioned: [Pg.348]    [Pg.177]    [Pg.19]    [Pg.84]    [Pg.285]    [Pg.348]    [Pg.177]    [Pg.19]    [Pg.84]    [Pg.285]    [Pg.10]    [Pg.197]    [Pg.455]    [Pg.692]    [Pg.767]    [Pg.258]    [Pg.506]    [Pg.121]    [Pg.7]    [Pg.7]    [Pg.189]    [Pg.384]    [Pg.200]    [Pg.244]    [Pg.126]    [Pg.310]    [Pg.234]    [Pg.611]    [Pg.437]    [Pg.298]    [Pg.853]    [Pg.441]    [Pg.235]    [Pg.193]    [Pg.8]    [Pg.200]    [Pg.795]    [Pg.106]    [Pg.269]    [Pg.106]    [Pg.290]    [Pg.232]   
See also in sourсe #XX -- [ Pg.367 , Pg.368 , Pg.370 ]




SEARCH



Bases concentration

Concentrated dependence

Concentration dependence

Concentration dependency

Dependence on concentration

© 2024 chempedia.info