Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density precision

Saturated Liquid Densities. Precise and consistent data are available from the triple point to the critical point (5). The variables are defined as... [Pg.359]

In recent years, several high-precision instruments have become available, the most noteworthy of which are those based on an oscillating sample holder. A glass U-tube is filled with the sample and caused to oscillate at its natural frequency, which is dependent on the total mass of the system. Since the tube has a constant mass and sample volume, the measured frequency of oscillation can be related to the liquid sample density. Precisions of up to 10 gcm have been claimed for some instruments. [Pg.33]

Using static instead of dynamic compaction is advantageous since specimens can be compacted in any desirable dry density precisely. It also requires less manual effort. [Pg.29]

Enthalpies are referred to the ideal vapor. The enthalpy of the real vapor is found from zero-pressure heat capacities and from the virial equation of state for non-associated species or, for vapors containing highly dimerized vapors (e.g. organic acids), from the chemical theory of vapor imperfections, as discussed in Chapter 3. For pure components, liquid-phase enthalpies (relative to the ideal vapor) are found from differentiation of the zero-pressure standard-state fugacities these, in turn, are determined from vapor-pressure data, from vapor-phase corrections and liquid-phase densities. If good experimental data are used to determine the standard-state fugacity, the derivative gives enthalpies of liquids to nearly the same precision as that obtained with calorimetric data, and provides reliable heats of vaporization. [Pg.82]

To be easily attracted by the poles created perpendicularly to the defect, particles must satisfy precise conditions concerning dimensions, shape, density and magnetic property. [Pg.637]

Now calculate the molecular weight of the substance precisely as described on p. 442. The weight of the solvent employed may be calculated from the following densities methanol, 0 810 rectified spirit, 0-807 acetone, 0 797 ethyl acetate, 0 905 chloroform, 1 504 carbon tetrachloride, 1 582 benzene, 0 880 toluene, 0-871 cyclohexane, 0-724 i, 2-dichloroethane, 1 252. [Pg.445]

Its charge density distribution is like that of the cation (with sign reversal) because the added electron goes into the nonbonded orbital with a node at the central carbon atom. The probability of finding that electron precisely at the central carbon atom is zero. [Pg.212]

One of the most important uses of models is to show how electrons are distributed inside molecules The laws of quantum mechanics state that an electron s spatial location can not be precisely specified but the likelihood of detecting an electron at a particular loca tion can be calculated (and measured) This likelihood is called the electron density (see Chapter 1) and SpartanView can display three dimensional graphs that show regions of high and low electron density inside a molecule... [Pg.1266]

Schematic illustrations of the effect of temperature and surface density (time) on the ratio of two isotopes, (a) shows that, generally, there is a fractionation of the two isotopes as time and temperature change the ratio of the two isotopes changes throughout the experiment and makes difficult an assessment of their precise ratio in the original sample, (b) illustrates the effect of gradually changing the temperature of the filament to keep the ratio of ion yields linear, which simplifies the task of estimating the ratio in the original sample. The best method is one in which the rate of evaporation is low enough that the ratio of the isotopes is virtually constant this ratio then relates exactly to the ratio in the original sample. Schematic illustrations of the effect of temperature and surface density (time) on the ratio of two isotopes, (a) shows that, generally, there is a fractionation of the two isotopes as time and temperature change the ratio of the two isotopes changes throughout the experiment and makes difficult an assessment of their precise ratio in the original sample, (b) illustrates the effect of gradually changing the temperature of the filament to keep the ratio of ion yields linear, which simplifies the task of estimating the ratio in the original sample. The best method is one in which the rate of evaporation is low enough that the ratio of the isotopes is virtually constant this ratio then relates exactly to the ratio in the original sample.
The pressure P is measured in kPa and the temperature Tin K. The vapor pressure of pure acetic acid is tabulated in Table 2. Precise Hquid density ... [Pg.64]

Effect of Uncertainties in Thermal Design Parameters. The parameters that are used ia the basic siting calculations of a heat exchanger iaclude heat-transfer coefficients tube dimensions, eg, tube diameter and wall thickness and physical properties, eg, thermal conductivity, density, viscosity, and specific heat. Nominal or mean values of these parameters are used ia the basic siting calculations. In reaUty, there are uncertainties ia these nominal values. For example, heat-transfer correlations from which one computes convective heat-transfer coefficients have data spreads around the mean values. Because heat-transfer tubes caimot be produced ia precise dimensions, tube wall thickness varies over a range of the mean value. In addition, the thermal conductivity of tube wall material cannot be measured exactiy, a dding to the uncertainty ia the design and performance calculations. [Pg.489]

The pressure developed by decomposition of acetylene in a closed container depends not only on the initial pressure (or more precisely, density), but also on whether the flame propagates as a deflagration or a detonation, and on the length of the container. For acetylene at room temperature and pressure, the calculated explosion pressure ratio, / initial > deflagration and ca 20 for detonation (at the Chapman-Jouguet plane). At 800 kPa (7.93... [Pg.376]

For ordinary materials and higher production rates, P/M forging can be used (26,28). After parts are compacted and sintered to medium density, they are reheated, lubricated, and fed into a hot-forming or P/M-forging press. The part is formed by one stroke of the press in a closed precision die. A typical hot-forming press setup includes die sets, automatic die cooling and lubrication, transfer mechanism, an induction heating unit for preforms, and controls. [Pg.184]

Density. Density of LLDPE is measured by flotation in density gradient columns according to ASTM D1505-85. The most often used Hquid system is 2-propanol—water, which provides a density range of 0.79—1.00 g/cm. This technique is simple but requires over 50 hours for a precise measurement. The correlation between density (d) and crystallinity (CR) is given hy Ijd = CRj + (1 — Ci ) / d, where the density of the crystalline phase, ify, is 1.00 g/cm and the density of the amorphous phase, is 0.852—0.862 g/cm. Ultrasonic methods (Tecrad Company) and soHd-state nmr methods (Auburn International, Rheometrics) have been developed for crystallinity and density measurements of LLDPE resins both in pelletized and granular forms. [Pg.403]


See other pages where Density precision is mentioned: [Pg.235]    [Pg.159]    [Pg.503]    [Pg.448]    [Pg.49]    [Pg.235]    [Pg.159]    [Pg.503]    [Pg.448]    [Pg.49]    [Pg.580]    [Pg.686]    [Pg.61]    [Pg.6]    [Pg.1298]    [Pg.1324]    [Pg.1452]    [Pg.2265]    [Pg.2645]    [Pg.2648]    [Pg.2937]    [Pg.212]    [Pg.113]    [Pg.123]    [Pg.187]    [Pg.9]    [Pg.322]    [Pg.108]    [Pg.178]    [Pg.331]    [Pg.378]    [Pg.57]    [Pg.89]    [Pg.412]    [Pg.296]    [Pg.129]    [Pg.130]    [Pg.177]    [Pg.168]    [Pg.390]    [Pg.543]    [Pg.394]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



© 2024 chempedia.info