Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decomposition classes

The three decomposition classes of organic materials of the U.S. system have the following properties ... [Pg.57]

In the coordinate system shown in Fig. 5, the set of polynitro arenes studied falls into several classes. Classes A and C contain compounds characterised by the trinitrotoluene mechanism of primary fission in their thermal decomposition. Class B represents unsubstituted polynitro arenes (TNB, HNB and NONA) with primary homolysis of C-NO2 bond in their thermal decomposition. Correlation of HNS data with this Class may be a coincidence but it may also be a result of intermolecular interaction in its crystals. Class D contains dipicryl derivatives in which the intermolecular interaction should dominate the influence on their reactivity (primary fission by heat in NONA is different from that in DIPS). The said influence occurs occasionally in larger molecules with strong intermolecular interactions and was observed in some cases of decomposition initiated by impact [36,75], electric spark [35,36] and (depending on the measurement method applied) also heat [102]. [Pg.40]

Another important class of dryer is the fluidized-bed dryers. Some designs combine spray and fluidized-bed dryers. Choice between dryers is usually based on practicalities such as the materials handling characteristics, product decomposition, product physical form (e.g., if a porous granular material is required), etc. Also, dryer efficiency can be used to compare the performance of different dryer designs. This is usually defined as follows -. [Pg.91]

Methods of decomposing the nonbonded force evaluation fall into two classes, spatial decomposition [15] in which atoms and their interactions are divided among processors based on their coordinates, and force-matrix decomposition [16] in which the calculation of the interaction between a pair of atoms is assigned to a processor without considering the location of either atom (Fig. 1). Spatial decomposition scales better to large numbers of... [Pg.474]

Precipitation Hardening. With the exception of ferritic steels, which can be hardened either by the martensitic transformation or by eutectoid decomposition, most heat-treatable alloys are of the precipitation-hardening type. During heat treatment of these alloys, a controlled dispersion of submicroscopic particles is formed in the microstmeture. The final properties depend on the manner in which particles are dispersed, and on particle size and stabiUty. Because precipitation-hardening alloys can retain strength at temperatures above those at which martensitic steels become unstable, these alloys become an important, in fact pre-eminent, class of high temperature materials. [Pg.114]

Depending on the peroxide class, the rates of decomposition of organic peroxides can be enhanced by specific promoters or activators, which significantly decrease the energy necessary to break the oxygen—oxygen bond. Such accelerated decompositions occur well below the peroxides normal appHcation temperatures and usually result in generation of only one usehil radical, instead of two. An example is the decomposition of hydroperoxides with multivalent metals (M), commonly iron, cobalt, or vanadium ... [Pg.221]

As a peroxide class, dialkyl peioxydicaibonates are very susceptible to ladical-induced decompositions ... [Pg.227]

However, because of the high temperature nature of this class of peroxides (10-h half-life temperatures of 133—172°C) and their extreme sensitivities to radical-induced decompositions and transition-metal activation, hydroperoxides have very limited utiUty as thermal initiators. The oxygen—hydrogen bond in hydroperoxides is weak (368-377 kJ/mol (88.0-90.1 kcal/mol) BDE) andis susceptible to attack by higher energy radicals ... [Pg.227]

This is basically the same type of induced decomposition that occurs with other peroxide classes, eg, the dialkyl peioxydicaibonates and diacyl peroxides. Table 8. Commercial rerf-Alkyl Hydroperoxides ... [Pg.227]

Carbon Composites. In this class of materials, carbon or graphite fibers are embedded in a carbon or graphite matrix. The matrix can be formed by two methods chemical vapor deposition (CVD) and coking. In the case of chemical vapor deposition (see Film deposition techniques) a hydrocarbon gas is introduced into a reaction chamber in which carbon formed from the decomposition of the gas condenses on the surface of carbon fibers. An alternative method is to mold a carbon fiber—resin mixture into shape and coke the resin precursor at high temperatures and then foUow with CVD. In both methods the process has to be repeated until a desired density is obtained. [Pg.275]

Organic Solids A few organic compounds decompose before melting, mostly nitrogen compounds azides, diazo compounds, and nitramines. The processes are exothermic, classed as explosions, and may follow an autocatalytic law. Temperature ranges of decomposition are mostly 100 to 200°C (212 to 392°F). Only spotty results have been obtained, with no coherent pattern. The decomposition of malonic acid has been measured for both the solid and the supercooled liquid. The first-order specific rates at 126.3°C (259.3°F) were 0.00025/min for solid and 0.00207 for liquid, a ratio of 8 at II0.8°C (23I.4°F), the values were 0.000021 and 0.00047, a ratio of 39. The decomposition of oxalic acid (m.p. I89°C) obeyed a zero-order law at 130 to I70°C (266 to 338°F). [Pg.2122]

Following are the classes of compounds that have a tendency to undergo violent or explosive decomposition. [Pg.2313]

While this book does not cover shock-sensitive powders, such as primary explosives, UN-DOT Class 4.1 Flammable Solids are within its scope. These include thermally unstable powders that can both deflagrate in an oxidant and decompose in bulk. Examples include some nitrogen blowing agents. Should ignition occur at any point, a propagating decomposition... [Pg.175]

Blowing agent Class Volatiles produced Decomposition range (°C) Gas yield (cm /g) Comments... [Pg.151]

The most important class of stabilisers are the lead compounds which form lead chloride on reaction with hydrogen chloride evolved during decomposition. As a class the lead compounds give rise to products of varying opacity, are toxic and turn black in the presence of certain sulphur-containing compounds but are good heat stabilisers. [Pg.327]

Decomposition reactions are a special class of propagating flames where a molecule can undergo spontaneous exothermic reaction. The most widely reported incidents in which decomposition reactions occur are for acetylene where decomposition primarily gives carbon and hydrogen, as shown in the following reaction ... [Pg.59]

The early work of Kennerly and Patterson [16] on catalytic decomposition of hydroperoxides by sulphur-containing compounds formed the basis of the preventive (P) mechanism that complements the chain breaking (CB) process. Preventive antioxidants (sometimes referred to as secondary antioxidants), however, interrupt the second oxidative cycle by preventing or inhibiting the generation of free radicals [17]. The most important preventive mechanism is the nonradical hydroperoxide decomposition, PD. Phosphite esters and sulphur-containing compounds, e.g., AO 13-18, Table la are the most important classes of peroxide decomposers. [Pg.109]


See other pages where Decomposition classes is mentioned: [Pg.57]    [Pg.1024]    [Pg.18]    [Pg.780]    [Pg.57]    [Pg.1024]    [Pg.18]    [Pg.780]    [Pg.171]    [Pg.97]    [Pg.4]    [Pg.533]    [Pg.455]    [Pg.222]    [Pg.318]    [Pg.466]    [Pg.290]    [Pg.407]    [Pg.221]    [Pg.223]    [Pg.96]    [Pg.97]    [Pg.98]    [Pg.132]    [Pg.281]    [Pg.455]    [Pg.476]    [Pg.289]    [Pg.387]    [Pg.43]    [Pg.49]    [Pg.83]    [Pg.684]    [Pg.207]    [Pg.1]    [Pg.864]    [Pg.273]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



© 2024 chempedia.info