Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Data, format reduction scheme

Microcomposite tests including fiber pull-out tests are aimed at generating useful information regarding the interface quality in absolute terms, or at least in comparative terms between different composite systems. In this regard, theoretical models should provide a systematic means for data reduction to determine the relevant properties with reasonable accuracy from the experimental results. The data reduction scheme must not rely on the trial and error method. Although there are several methods of micromechanical analysis available, little attempt in the past has been put into providing such a means in a unified format. A systematic procedure is presented here to generate the fiber pull-out parameters and ultimately the relevant fiber-matrix interface properties. [Pg.138]

Some data have been obtained on the activity of the catalyst in a reduced state [for nickel (141,143,144), palladium (144°), and molybdenum (145, 145a). In the case of nickel catalysts the formation of nickel in the zero oxidation state takes place during the reduction of the surface organometallic compound by H2. The infrared spectrum shows the total restoration of the concentration of Si—OH groups (139), so the reduction proceeds according to the scheme ... [Pg.191]

The Lowe-Thorneley scheme was devised using sodium dithionite as reductant, but the foregoing data imply that when other reductants are used, including the natural reductants, the same path is not necessarily followed. It seems clear that some reinvestigation of the Lowe-Thorneley scheme using alternative reductants is necessary. However, the detailed simulation of product formation provided by the scheme implies that much of it is likely to remain intact, although the exact nature of the rate-determining step may not be the same with all reductants. [Pg.186]

Reductive cleavage of the Si-Si bond of bis(siloles) with alkali metals resulted in the formation of silole monoanions (Scheme 2.49). Silole monoanions were found to be aromatic on the basis of NMR spectral data and calculations. [Pg.91]

C-C bond formation mediated by silane.6,6a 6f With respect to the development of intramolecular variants, these seminal studies lay fallow until 1990, at which point the palladium- and nickel-catalyzed reductive cyclization of tethered 1,3-dienes mediated by silane was disclosed. As demonstrated by the hydrosilylation-cyclization of 1,3,8,10-tetraene 21a, the /rarcr-divinylcyclopentanes 21b and 21c are produced in excellent yield, but with modest stereoselectivity.46 Bu3SnH was shown to participate in an analogous cyclization.46 Isotopic labeling and crossover experiments provide evidence against a mechanism involving initial diene hydrosilylation. Rather, the collective data corroborate a mechanism involving oxidative coupling of the diene followed by silane activation (Scheme 15). [Pg.502]

Photodegradation of DDT by the protease-liberated flavo-protein from TX-20 resulted in the formation of TDE as the major product in addition to three other minor compounds. It has been well established that DDT conversion to TDE, anaerobically, is a reductive process involving replacement of a chlorine atom by hydrogen. On the other hand, it has been suggested that photo-lytic reactions involve a charge transfer from an amine to DDT and a subsequent pickup of a proton. Thus there is a possibility that the photochemical reaction involving flavoproteins undergoes a similar reaction scheme. Much more data are, however, needed to confirm this point. [Pg.384]

This amounts to a sizeable reduction of the information that has to be stored, while conserving a rather good accuracy in the data. With these four parameters unknown heats of formation of alkanes can be estimated by the additivity scheme with a similarly high accuracy. This approach has been extended to other series of compounds. [Pg.260]

The detailed mechanism of P aeruginosa CCP has been studied by a combination of stopped-flow spectroscopy (64, 65, 84, 85) and paramagnetic spectroscopies (51, 74). These data have been combined by Foote and colleagues (62) to yield a quantitative scheme that describes the activation process and reaction cycle. A version of this scheme, which involves four spectroscopically distinct intermediates, is shown in Fig. 10. In this scheme the resting oxidized enzyme (structure in Section III,B) reacts with 1 equiv of an electron donor (Cu(I) azurin) to yield the active mixed-valence (half-reduced) state. The active MV form reacts productively with substrate, hydrogen peroxide, to yield compound I. Compound I reacts sequentially with two further equivalents of Cu(I) azurin to complete the reduction of peroxide (compound II) before returning the enzyme to the MV state. A further state, compound 0, that has not been shown experimentally but would precede compound I formation is proposed in order to facilitate comparison with other peroxidases. [Pg.197]

D. The chronoamperometric results can also be used to ascertain the number of electrons involved in the formation of benzonitrile from p-chloro-benzonitrile. In order to translate the chronoamperometric data into a meaningful n value, a compound is selected that has a diffusion coefficient very similar to that of p-chlorobenzonitrile and that gives a stable, known product upon electroreduction. Tolunitrile, which satisfies these criteria, is known to be reduced to its radical anion at a diffusion-controlled rate. Since this one-electron process gives a value of 168 pA s1/2- M x cm 2 for it1/2/CA, the corresponding value of 480 pA s1/2 A/ 1 cm-2 for the reduction of p-chlorobenzonitrile to benzonitrile anion radical must represent an overall three-electron process. When we subtract the one electron that is required to reduce benzonitrile to its radical anion from this total, we immediately conclude that two electrons are involved in cleavage of the carbon-chlorine bond in p-chlorobenzonitrile. A scheme that is consistent with these data is described by Equations 21.1 to 21.6. [Pg.627]

McMurray [151] has described the acid-assisted cleavage of the N]-C4 bond in trans 4-hydroxyphenyl p-lactams. The ring opening reaction may proceed with concomitant reduction or formation of carbon-carbon coupling products, as a function of the reagent employed. For instance, Scheme 60, treatment of 196 with 4 equivalents of triethylsilane in neat trifluoroacetic acid led to compound 197. On the contrary, treatment with anisole in trifluoroacetic acid led to compound 198. Unfortunately, no data are provided by authors regarding process yield or final diastereomeric ratio. [Pg.247]

The cation radicals depicted in the scheme were really detected, but they originate from the fast reaction of one-electron transfer, which does not affect kinetic constants of the oxidation. The rate constant depends linearly on Brown s o-constants of substituents (Dessau et al. 1970). All these data are in agreement with the formation of the strong polar dication of an aromatic hydrocarbon as an intermediate. Because Pb11 salts (in particular, the diacetate) are not reductants, the two-electron-transfer reaction proceeds irreversibly. [Pg.77]

In the nitrogen and boron analogs depicted in Scheme 3-52, two methyl groups provide a sufficient shielding at the NR2 centers (R = Me), while two mesityl groups are needed for protection of the BR2 centers (R = 2,4,6-trimethyl phenyl). Electrochemical studies of l,4-bis(dimesitylboryl)benzene have shown two well-separated one-electron reduction processes, with the formation of the corresponding anion radicals and dianions, respectively (Fiedler et al. 1996). According to UV/vis/near-IR and ESR spectroscopic data... [Pg.173]

Reaction of Cytochrome cIinn with Bis(ferrozine)copper(II) Knowledge of the redox properties of cytochrome c was an encouragement to initiate a kinetics investigation of the reduction of an unusual copper(II) complex species by cyt c11. Ferrozine (5,6-bis(4-sulphonatophenyl)-3-(2-pyridyl)-1,2.4-triazine)286 (see Scheme 7.1), a ligand that had come to prominence as a sensitive spectrophotometric probe for the presence of aqua-Fe(II),19c,287 forms a bis complex with Cu(II) that is square pyramidal, with a water molecule in a fifth axial position, whereas the bis-ferrozine complex of Cu(I) is tetrahedral.286 These geometries are based primarily upon analysis of the UV/visible spectrum. Both complexes are anionic, as for the tris-oxalato complex of cobalt in reaction with cytochrome c (Section 7.3.3.4), the expectation is that the two partners will bind sufficiently strongly in the precursor complex to allow separation of the precursor formation constant from the electron transfer rate constant, from the empirical kinetic data. [Pg.315]

Paquette et al. start with the bis-vinylogation of the same compound 29 [14], by Wittig-Horner reaction, reduction, and oxidation (Scheme 5). For the formation of the C17-C16 bond, the onti-aldol 41 (ds not reported) is obtained by treatment of the aldehyde 39 with the (Z)-boron enolate 40, bearing a dithioketal moiety that is later to be the C51-C54 side chain. 3-Hydroxy-assisted, diastereoselective reduction of the keto group at C15 gives 41, which is converted into intermediate 42 in five more steps. The dethioketalization of 41 is achieved with phenyliodine(m) bis(trifluoroacetate) [16], As in Nicolaou s synthesis, the N12-C13 amide bond is formed first, followed by a low-yielding (21%, even at a concentration of 1 him) macrolactonization to 3. Table 1 summarizes the benchmark data of the two total syntheses of sanglifehrin A (1). [Pg.357]

Although Curran s rate data for the reduction of radicals to organosamar-iums allow for an element of predictablity,2 problems can arise when multifunctional substrates are involved. For example, in the attempted intramolecular Barbier reaction of alkyl iodide 13, treatment with Sml2 results in the formation of side product 15 in addition to the expected product cyclohexanol 14 (Scheme 3.7).8 In this case, the p-keto amide motif in 13 is reduced at a rate competitive with alkyl iodide reduction, indicating that there are likely two mechanistic pathways through which the reaction proceeds a thermodynamic pathway initiated by reduction of the R I bond providing the... [Pg.24]

Based on the accompanying kinetic data and an observation that lithium cation is essential in the lithium aluminum hydride reduction,5 Ashby and Boone proposed that the reduction would occur via a six-membered transition state in which the lithium cation is involved4 (Scheme 4.II). Because the aluminum in the boat transition state TS-boat is proximal to the carbonyl oxygen, the boat transition state might be of lower energy than the chairlike transition state TS-chair. Furthermore, the boatlike transition state would be a favored states as it results in direct formation of the lithium alkoxyaluminum hydride intermediate. [Pg.147]

In neutral medium, on the other hand, the neutral form undergoes preferential four-electron reduction of the bond systems C3—C4 and C5— C6, with the formation of the tetrahydro derivative, but the 2e-intermediate (5,6-dihydrocytosine) was also found. In neutral medium the reduction products undergo only partial (60 %) deamination, in agreement with data on the catalytic reduction of cytosine 86). The scheme for electroreduction of cytosine would therefore be as follows (Scheme 8 a, b)1,84). [Pg.148]


See other pages where Data, format reduction scheme is mentioned: [Pg.143]    [Pg.117]    [Pg.225]    [Pg.108]    [Pg.116]    [Pg.91]    [Pg.271]    [Pg.174]    [Pg.199]    [Pg.1012]    [Pg.291]    [Pg.158]    [Pg.226]    [Pg.179]    [Pg.158]    [Pg.1234]    [Pg.271]    [Pg.171]    [Pg.31]    [Pg.343]    [Pg.108]    [Pg.402]    [Pg.591]    [Pg.97]    [Pg.249]    [Pg.154]    [Pg.69]    [Pg.352]    [Pg.239]    [Pg.318]    [Pg.1204]    [Pg.391]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Data reduction

Data, format

Formate reductant

Formates reduction

Reduction formation

Schemes formatting

© 2024 chempedia.info