Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopropanes examples

The deshielding effects of chlorine and bromine appear to be similar, with the chlorine having a greater deshielding influence in the methane examples above but a smaller influence in the cyclopropane example in Scheme 3.11. [Pg.59]

The carbenoid character of 1-halo-l-lithioalkenes becomes also evident from C—H insertions and cyclopropanations, examples of which are given in equations 47 and 48,... [Pg.866]

Alkenes susceptible to Michael additions react with sulfur ylides to form cyclopropanes. Examples of typical ylides used in the cyclopropanation reaction of Michael acceptors are presented in Scheme 4. Best results were obtained with stabilized ylides, i.e. ylides of type C, D or E, and yields were enhanced with increase of the electron-withdrawing capacity of the anion stabilizing group in the alkene. The mechanism of the cyclopropanation reaction (Scheme 5) is known, and proceeds in a nonstereospecific manner. The E/Z geometry of the alkene is frequently retained in the product and a high degree of asymmetric induction can be achieved with optically active Michael acceptors or ylides. [Pg.80]

In the cyclopropane example, where X = Sa , (2) gives four separate combinations when applied to St = an -... [Pg.274]

As final examples, the intramolecular cyclopropane formation from cycloolefins with diazo groups (S.D. Burke, 1979), intramolecular cyclobutane formation by photochemical cycloaddition (p. 78, 297f., section 4.9), and intramolecular Diels-Alder reactions (p. 153f, 335ff.) are mentioned. The application of these three cycloaddition reactions has led to an enormous variety of exotic polycycles (E.J. Corey, 1967A). [Pg.94]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Facile reaction of a carbon nucleophile with an olefinic bond of COD is the first example of carbon-carbon bond formation by means of Pd. COD forms a stable complex with PdCl2. When this complex 192 is treated with malonate or acetoacetate in ether under heterogeneous conditions at room temperature in the presence of Na2C03, a facile carbopalladation takes place to give the new complex 193, formed by the introduction of malonate to COD. The complex has TT-olefin and cr-Pd bonds. By the treatment of the new complex 193 with a base, the malonate carbanion attacks the cr-Pd—C bond, affording the bicy-clo[6.1,0]-nonane 194. The complex also reacts with another molecule of malonate which attacks the rr-olefin bond to give the bicyclo[3.3.0]octane 195 by a transannulation reaction[l2.191]. The formation of 194 involves the novel cyclopropanation reaction of alkenes by nucleophilic attack of two carbanions. [Pg.47]

In other cases, sulfenic acid elimination can involve y-hydrogen atoms with the formation of cyclopropane derivatives. y-Klimination is favored when DMSO is the reaction solvent. An example involving l-methylsulfinyl-2-ethyl-3-phenyl propane [14198-15-3] is shown in equation 13 (45) ... [Pg.109]

Hydrogen bromide adds to acetylene to form vinyl bromide or ethyHdene bromide, depending on stoichiometry. The acid cleaves acycHc and cycHc ethers. It adds to the cyclopropane group by ring-opening. Additions to quinones afford bromohydroquinones. Hydrobromic acid and aldehydes can be used to introduce bromoalkyl groups into various molecules. For example, reaction with formaldehyde and an alcohol produces a bromomethyl ether. Bromomethylation of aromatic nuclei can be carried out with formaldehyde and hydrobromic acid (6). [Pg.291]

Many rearrangements forming C—C bonds have been applied to the preparation of heterocyclics. The Cope rearrangement is prominent, and an example is shown in Scheme 8. The staring material usually most accessible is an alkene, which is converted to the required cyclopropane at some stage before the rearrangement step. [Pg.35]

Incorporation of stereogenic centers into cyclic structures produces special stereochemical circumstances. Except in the case of cyclopropane, the lowest-eneigy conformation of the tings is not planar. Most cyclohexane derivatives adopt a chair conformation. For example, the two conformers of cis-l,2-dimethylcyclohexane are both chiral. However, the two conformers are enantiomeric so the conformational change leads to racemization. Because the barrier to this conformational change is low (lOkcal/mol), the two enantiomers arc rapidly interconverted. [Pg.86]

NBS can also be used to brominate alkanes. For example, cyclopropane, cyclopentane, and cyclohexane give the corresponding bromides when irradiated in a solution of NBS in dichloromethane. Under these conditions, the succinimidyl radical appears to be involved as the hydrogen-abstracting intermediate ... [Pg.706]

In addition to unsaturated fatty acids, several other modified fatty acids are found in nature. Microorganisms, for example, often contain branched-chain fatty acids, such as tuberculostearic acid (Figure 8.2). When these fatty acids are incorporated in membranes, the methyl group constitutes a local structural perturbation in a manner similar to the double bonds in unsaturated fatty acids (see Chapter 9). Some bacteria also synthesize fatty acids containing cyclic structures such as cyclopropane, cyclopropene, and even cyclopentane rings. [Pg.242]

Dimethylsulfoxonium methylide (1) is the reagent of choice for the cyclopropanation of a,p-unsaturated carbonyl substrates. The reaction is generally carried out at more elevated temperatures in comparison to that of 2, although exceptions exist. The method works for 0 ,P-unsaturated ketones, esters and amides. Representative examples are found in transformations of 2(5//)-furanone 55 to cyclopropane 56 and 0 ,P-unsaturated Weinreb amide 57 to cyclopropane 58. ... [Pg.8]

Catalytic, enantioselective cyclopropanation enjoys the unique distinction of being the first example of asymmetric catalysis with a transition metal complex. The landmark 1966 report by Nozaki et al. [1] of decomposition of ethyl diazoacetate 3 with a chiral copper (II) salicylamine complex 1 (Scheme 3.1) in the presence of styrene gave birth to a field of endeavor which still today represents one of the major enterprises in chemistry. In view of the enormous growth in the field of asymmetric catalysis over the past four decades, it is somewhat ironic that significant advances in cyclopropanation have only emerged in the past ten years. [Pg.85]

The Simmons-Smith reaction is well suited for the synthesis of spirocyclic compounds. It has for example been applied for the construction of the fifth cyclopropane ring in the last step of a synthesis of the rotane 8 ... [Pg.259]

Carbon-carbon bonds are not easily cleaved under mild conditions unless weakened by strain 3,86,182) or activation. The most common examples of carbon-carbon bond cleavage occur in cyclopropanes. [Pg.173]

The catalyst exerts some influence on the bonds broken in hydrogenolysis of saturated cyclopropanes (775), but in vinyl and alkylidene cyclopropanes the effect is pronounced. Platinum or palladium are used frequently. In one case, Nishimura s [124a) catalyst, rhodium-platinum oxide (7 3), worked well where platinum oxide failed (.75). An impressive example of the marked influence of catalyst is the hydrogenation of the spirooctane 42, which,... [Pg.174]

Physical properties of cycloalkanes [49, p. 284 50, p. 31] show reasonably gradual changes, but unlike most homologous series, different members exhibit different degrees of chemical reactivity. For example, cyclohexane is the least reactive member in this family, whereas both cyclopropane and cyclobutane are more reactive than cyclopentane. Thus, hydrocarbons containing cyclopentane and cyclohexane rings are quite abundant in nature. [Pg.309]

As an example we calculate the number of different isomeric substitutes of cyclopropane of the form... [Pg.62]

The procedure used in the preceding sections for cyclopropane serves equally well in the analytic determination of the numbers of structure and stereoisomeric compounds which obtain when essentially different radicals of valence one or alkyl radicals are substituted in the basic compound. We have to assume, however, that there is enough information on the basic compound to determine the three groups discussed in Sec. 56. This is certainly the case for the most important basic compounds, benzene and naphthalene. I omit the formulation of rules which are obvious in the preceding example. [Pg.64]


See other pages where Cyclopropanes examples is mentioned: [Pg.20]    [Pg.373]    [Pg.187]    [Pg.117]    [Pg.32]    [Pg.14]    [Pg.140]    [Pg.300]    [Pg.113]    [Pg.606]    [Pg.159]    [Pg.3]    [Pg.28]    [Pg.58]    [Pg.8]    [Pg.357]    [Pg.993]    [Pg.14]    [Pg.225]    [Pg.324]    [Pg.104]    [Pg.105]    [Pg.122]    [Pg.126]    [Pg.145]    [Pg.213]    [Pg.146]    [Pg.60]   
See also in sourсe #XX -- [ Pg.916 , Pg.931 , Pg.935 ]




SEARCH



Cyclopropanation first example

Cyclopropanations example

Cyclopropanations example

© 2024 chempedia.info