Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity cyclopentadienyl

Simple cyclobutanes do not readily undergo such reactions, but cyclobutenes do. Ben-zocyclobutene derivatives tend to open to give extremely reactive dienes, namely ortho-c]uin(xlimethanes (examples of syntheses see on p. 280, 281, and 297). Benzocyclobutenes and related compounds are obtained by high-temperature elimination reactions of bicyclic benzene derivatives such as 3-isochromanone (C.W. Spangler, 1973, 1976, 1977), or more conveniently in the laboratory, by Diels-Alder reactions (R.P. Thummel, 1974) or by cycliza-tions of silylated acetylenes with 1,5-hexadiynes in the presence of (cyclopentadienyl)dicarbo-nylcobalt (W.G, Aalbersberg, 1975 R.P. Thummel, 1980). [Pg.80]

Section 14 14 Transition metal complexes that contain one or more organic ligands offer a rich variety of structural types and reactivity Organic ligands can be bonded to a metal by a ct bond or through its it system Metallocenes are transition metal complexes m which one or more of the ligands is a cyclopentadienyl ring Ferrocene was the first metallocene synthesized Its electrostatic potential map opens this chapter... [Pg.616]

Examine the molecular model of ferrocene on Learning By Modeling Does ferrocene have a dipole moment Would you expect the cyclopentadienyl nngs of ferrocene to be more reactive toward nucleophiles or electrophiles Where is the region of highest electrostatic potential... [Pg.622]

Studies of chlorination and bromination of 2//-cyclopenta[reactivity differences dependent on substituents and halogenation conditions. In monochlorination the unsubstituted compound was more reactive than its 2-methyl and 2-phenyl derivatives, the reactivity ratio being 7.1 1.7 1 [78H(11)155]. Chlorination occurred most readily in the 5- and 7-positions of the cyclopentadienyl moiety, but once all three positions had been substituted, NCS attacked the methyl group... [Pg.302]

Conjugated chains, 14, 46 Correlation diagrams, 44, 50 Cyclobutadiene, 171 Cyclobutane, 47, 222 orbital ordering, 26 through-space interactions, 26 Walsh orbitals, 27 Cyclobutene, 200 Cyclohexane, 278 Cyclohexene (half-boat), 274 Cyclopen tadiene, 225 Cvclopen tadienone, 269 Cyclopentadienyl anion, 237 Cyclopentane, 254 Cyclopen ten e, 241 Cyclopropane, 41, 47, 153 construction of orbitals, 19, 22 Walsh orbitals, 22, 36, 37 Cyclopropanone, 48, 197 bond lengths, 38 Cyclopropen e, 49, 132 reactivity, 40... [Pg.303]

The breakthrough was achieved with the creation of dialkoxy(tj5-cyclopentadienyl)titanium(IV) chlorides derived from sterically hindered chiral alcohols11 35,35a 36. Allyl derivatives 8 and 10, prepared in situ from complexes 7 and 9, have sufficient stability and reactivity. [Pg.427]

The commercially available (tj5-cyclopentadienyl)iron dicarbonyl dimer 1 is the source of the carbonyl(//5-cyclopentadienyl)iron(L) moiety. Reductive or oxidative cleavage of 1 provides reactive monomeric species that may be converted into iron-acyl complexes as described in the following sections (see also Houben-Weyl, Vol. 13/9a, p208). [Pg.518]

More than twenty years ago, Nesmeyanov s group showed that chlorine can be substituted by a variety of nucleophiles in FeCp(r 6-PhCl)+ [83, 84]. Indeed the chlorine substituent in the chlorobenzene (even) ligand is 1000 times more reactive than when it is located on the cyclopentadienyl (odd) ligand [85]. The FeCp+ is a good withdrawing group which is equivalent to two nitro groups in terms of activation. The reactions proceed under ambient conditions with primary or secondary amines and have been extended to other substituted chloroarene complexes [86, 87] Eq. (22), Table 2. [Pg.73]

Schrock-type carbenes are nucleophilic alkylidene complexes formed by coordination of strong donor ligands such as alkyl or cyclopentadienyl with no 7T-acceptor ligand to metals in high oxidation states. The nucleophilic carbene complexes show Wittig s ylide-type reactivity and it has been discussed whether the structures may be considered as ylides. A tantalum Schrock-type carbene complex was synthesized by deprotonation of a metal alkyl group [38] (Scheme 7). [Pg.5]

The allylic, allenic, propargylic, 2,4-dienylic, cyclopentadienylic, and related tin compounds present special, structural features and show special reactivity by both heterolytic and homolytic mechanisms. [Pg.13]

In striking contrast, o-QM cyclopentadienyl Ir and Rh complexes (Cp Ir and Cp Rh) such as Ir-iPr241 and RhMe242 (Scheme 2.12) have been isolated, characterized by X-ray diffraction, and have shown nucleophilic reactivity at the exocyclic carbon. [Pg.51]

It has been shown that boratabenzenes can provide the framework for a new family of stable, 19-electron iron-sandwich complexes. For example, treatment of (C6Me6)FeCp with MeBBr2 leads to insertion to furnish the corresponding r 6-boratabenzene adduct (Scheme 18).33 The structures, EPR spectra, and reactivity of these boratabenzene complexes are very similar to their well-studied (arene)Fe(cyclopentadienyl) precursors. The unpaired electron resides in an antibonding orbital that is largely metal based. [Pg.111]

Reaction of ammonium hexanitrocerate and cyclopentadienylsodium under inert conditions gives tris(cyclopentadienyl)cerium and sodium nitrate, removed by filtration before evaporation of solvent [1]. When the filtration step was omitted, and the evaporated solid mixture was heated to 75°C, a violent explosion occurred. This may have involved complexes of the type Ce(N03)Cp2.NaN03[2], but a direct redox reaction between the reactive CeCp3and the oxidant is also possible. [Pg.1780]

Borabenzene metal complexes, like their cyclopentadienyl counterparts, are not readily amenable to breaking of the metal-ligand bond. Such bond breaking will occur more easily in complexes with antibonding electrons. By fortuitous chance the cobaltocene route to borabenzene chemistry (Section V,A) provided 19-e complexes with the useful property of inherently weakened metal-ligand bonds. Thus most of this section centers on the reactivity of Co(C5H5BMe)2 (7) and Co(CsH5BPh)2 (13). [Pg.226]

While the chemistry of metal carbonyl complexes has enjoyed a rather long and colorful history, being extensively studied and widely reviewed (7-3), the synthesis and reactivity of the group 4B (Ti, Zr, Hf) metal carbonyls have developed relatively slowly. Although the first well-characterized group 4B metal carbonyl complex, bis(i7-cyclopentadienyl)-dicarbonyltitanium (1), was reported by Murray of Monsanto Co. in... [Pg.318]


See other pages where Reactivity cyclopentadienyl is mentioned: [Pg.439]    [Pg.136]    [Pg.263]    [Pg.148]    [Pg.168]    [Pg.189]    [Pg.98]    [Pg.100]    [Pg.100]    [Pg.114]    [Pg.125]    [Pg.139]    [Pg.154]    [Pg.6]    [Pg.53]    [Pg.86]    [Pg.130]    [Pg.17]    [Pg.248]    [Pg.450]    [Pg.287]    [Pg.95]    [Pg.196]    [Pg.73]    [Pg.92]    [Pg.328]    [Pg.343]    [Pg.19]    [Pg.2]    [Pg.6]    [Pg.10]    [Pg.39]    [Pg.101]   
See also in sourсe #XX -- [ Pg.307 , Pg.308 , Pg.309 ]




SEARCH



Cyclopentadienyls reactivity

Cyclopentadienyls reactivity

© 2024 chempedia.info