Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopentadiene synthesis

Figure 4.4 shows that accumulation of cyclopentene as an intermediate product increases in the initial period only and reaches its maximum when accumulation and consumption rates equalize. Further on, cyclopentadiene yield is equalized with increasing conditional contact time r (r = l/u where v is the liquid cyclopentane volume rate). For example, at 600 °C cyclopentene and cyclopentadiene yields equaling 10.5% and 5%, respectively, at 54.35% selectivity are reached at r = 1.66h. The rates of cyclopentene and cyclopentadiene synthesis increase first and reach their maxima at the inflection point. Cyclopentene, cyclopentadiene, methane, ethylene, carbon dioxide and unidentified hydrocarbons in the amount about 5% are synthesized in the reaction. [Pg.108]

John J. Partridge, Naresh K. Chadha, and Milan R. Uskokovic 44 ASYMMETRIC HYDRDBORATION OF 5-SUBSTITUTED CYCLOPENTADIENES SYNTHESIS OF METHYL (lR,5R)-5-HYDR0XY-2-CYCL0PENTENE-1-ACETATE... [Pg.292]

Another useful-looking photochemical approach to five-membered-ring carbo-cycle synthesis is by way of di-7r-methane type rearrangement of 3-vinylcyclo-propenes [e.g. (44)- (45)]. This approach to cyclopentadiene synthesis shows features not dissimilar to the method involving base treatment of vinyl gem-dibromocyclopropanes [e.g. (46)- (45)]. ... [Pg.205]

Warkentin, ]., Singelton, E., and Edger, I.F., Reactions of ethyl diazoacetate with cyclopentadiene synthesis of the epimeric ethyl bicyclo[3.1.0]hex-2-ene-6-carboxylate. Can. ]. Chem., 43, 3456, 1965. [Pg.1870]

The synthesis of natural products containing the quinonoid stmcture has led to intensive and extensive study of the classic diene synthesis (77). The Diels-Alder cycloaddition of quinonoid dienophiles has been reported for a wide range of dienes (78—80). Reaction of (2) with cyclopentadiene yields (79) [1200-89-1] and (80) [5439-22-5]. The analogous 1,3-cyclohexadiene adducts have been the subject of C-nmr and x-ray studies, which indicate the endo—anti—endo stereostmcture (81). [Pg.413]

Cyclopentadiene itself has been used as a feedstock for carbon fiber manufacture (76). Cyclopentadiene is also a component of supported metallocene—alumoxane polymerization catalysts in the preparation of syndiotactic polyolefins (77), as a nickel or iron complex in the production of methanol and ethanol from synthesis gas (78), and as Group VIII metal complexes for the production of acetaldehyde from methanol and synthesis gas (79). [Pg.435]

Methylene thiirane is obtained by thermolysis of several spirothiirane derivatives which are formally Diels-Alder adducts of methylenethiirane and cyclopentadiene or anthracene <78JA7436). They were prepared via lithio-2-(methylthio)-l,3-oxazolines (c/. Scheme 121). A novel synthesis of the allene episulfide derivatives, 2-isopropylidene-3,3- dimethylthiirane (good yield) or its 5-oxide (poor yield), involves irradiation of 2,2,3,3-tetramethyl-cyclopropanethione or its 5-oxide (81AG293). Substituents on the thiirane ring may be modified to give new thiiranes (Section 5.06.3.9). The synthesis of thiirane 1-oxides and thiirane 1,1-dioxides by oxidation is discussed in Section 5.06.3.3.8 and the synthesis of 5-alkylthiiranium salts by alkylation of thiiranes is discussed in Section 5.06.3.3.4. Thiirene 1-oxides and 1,1-dioxides may be obtained by dehydrohalogenation of 2-halothiirane 1-oxides and 1,1-dioxides (Section 5.06.4.1.2). [Pg.182]

Tropolone has been made from 1,2-cycloheptanedione by bromination and reduction, and by reaction with A -bromosuccinimide from cyolo-heptanone by bromination, hydrolysis, and reduction from diethyl pimelate by acyloin condensation and bromination from cyclo-heptatriene by permanganate oxidation from 3,5-dihydroxybenzoic acid by a multistep synthesis from 2,3-dimethoxybenzoic acid by a multistep synthesis from tropone by chlorination and hydrolysis, by amination with hydrazine and hydrolysis, or by photooxidation followed by reduction with thiourea from cyclopentadiene and tetra-fluoroethylene and from cyclopentadiene and dichloroketene. - ... [Pg.120]

Cyclopentadiene, b.p. 40°, is obtained by heating commercial 85% dicyclopentadiene (e.g., from Matheson, Coleman and Bell Company, Norwood, Ohio) under a short column (M in. diameter X 8-12 in. length) filled with glass helices. The distilled cyclopentadiene is collected in a receiver which is maintained at Dry Ice temperature until the cyclopentadiene is used. Methylcyclopentadiene and other substituted cyclopentadienes such as indene may also be employed for the synthesis of the correspondingly substituted ferrocenes. In these cases, the reaction of the hydrocarbon with sodium is much slower than with cyclopentadiene, and refluxing for several hours is required to complete the reaction. [Pg.33]

Clavulones I and II are members of an unusual family of marine prostanoids from the coral Clavularia viridis which are biosynthesiied by a cationic (i.e. non-radical, non-endoperoxide) pathway. The total synthesis of clavulones I and II was accomplished from cyclopentadiene as SM goal. [Pg.303]

The reaction investigated by Diels and Alder in 1928 was not new, examples had been known for several years [6]. Early work on the dimerization of tetra-chloropentadienone was conducted by Zincke in 1893 and 1897. In 1906, Albrecht described the product of addition of p-benzoquinone to one or two molecules of cyclopentadiene. Albrecht assigned erroneous formulas to these addition products, but they were later shown to be typical products of the diene synthesis by Diels and Alder. Ruler and Josephson reported the addition products formed by iso-prene and 1,4-benzoquinone in 1920. This research laid the ground work for Diels and Alder. [Pg.2]

A somewhat more complex application of this notion is represented by the CNS stimulant fencamfine (83). Diels-Alder addition of cyclopentadiene and nitrostyrene affords the norbomene derivative, 80. Catalytic hydrogenation reduces both the remaining double bond and the nitro group (81). ° Condensation with acetaldehyde gives the corresponding imine (82) a second reduction step completes the synthesis of fencamfine (83). ... [Pg.74]

Preparation of the aldehyde required for the synthesis of cyclothiazide (182) starts by carbonation of the Grignard reagent obtained from the Diels-Alder adduct (186) from allyl bromide and cyclopentadiene.The resulting acid (187) is then converted to the aldehyde (189) by reduction of the corresponding diethyl amide (188) with a metal hydride. [Pg.359]

Diels-Alder reactions Neutral ionic liquids have been found to be excellent solvents for the Diels-Alder reaction. The first example of a Diels-Alder reaction in an ionic liquid was the reaction of methyl acrylate with cyclopentadiene in [EtNH3][N03] [40], in which significant rate enhancement was observed. Howarth et al. investigated the role of chiral imidazolium chloride and trifluoroacetate salts (dissolved in dichloromethane) in the Diels-Alder reactions between cyclopentadiene and either crotonaldehyde or methacroline [41]. It should be noted that this paper describes one of the first examples of a chiral cationic ionic liquid being used in synthesis (Scheme 5.1-17). The enantioselectivity was found to be < 5 % in this reaction for both the endo (10 %) and the exo (90 %) isomers. [Pg.182]

Bicyclic ketone 13 is a pivotal intermediate in Corey s approach to the prostaglandins. Buried within 13 is the five-membered ring of PGF2a, albeit in an undeveloped form. It would appear that a particularly direct approach to the synthesis of 13 would involve a [4+2] cycloaddition reaction between substituted cyclopentadiene 15 and ketene. Unfortunately, however, ketene itself is not a suit-... [Pg.70]

A key transformation in Corey s prostaglandin synthesis is a Diels-Alder reaction between a 5-(alkoxymethyl)-l,3-cyclopenta-diene and a ketene equivalent such as 2-chloroacrylonitrile (16). As we have already witnessed in Scheme 3, it is possible to bring about a smooth [4+2] cycloaddition reaction between 5-substituted cyclopentadiene 15 and 2-chloroacrylonitrile (16) to give racemic 14 as a mixture of epimeric chloronitriles. Under these conditions, the diastereomeric chloronitriles are both produced in racemic form because one enantiotopic face of dienophile 16 will participate in a Diels-Alder reaction with the same facility as the other enantiotopic face. In subsequent work, Corey s group demonstrated that racemic hydroxy acid 11, derived in three steps from racemic 14 (see Scheme 3), could be resolved in a classical fashion with (+)-ephe-... [Pg.75]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

The preparation of 5-ACETYL-l,2,3,4,5-PENTAMETHYLCYCLO-PENTADIENE is of value in the synthesis of pentamethyleyclo-pentadiene and many pentamethylcyclopentadienyl metal carbonyl derivatives that are more soluble in organic solvents than those derived from cyclopentadiene. Simple preparations of 5,6-DIHYDRO-2-PYRAN-2-0NE and 2-//-PYRAN-2-ONE make these hitherto rather inaccessible intermediates available for cycloaddition and other reactions. The already broad scope of the Michael reaction has been widened further by including an efficient preparation of ETHYL (E)-3-NITROACRYLATE. Workers in the field of heterocyclic chemistry will find a simplified method for the preparation of 2,3,4,5-TETRA-HYDROPYRIDINE of help. [Pg.154]


See other pages where Cyclopentadiene synthesis is mentioned: [Pg.239]    [Pg.276]    [Pg.107]    [Pg.139]    [Pg.5803]    [Pg.239]    [Pg.276]    [Pg.107]    [Pg.139]    [Pg.5803]    [Pg.126]    [Pg.275]    [Pg.354]    [Pg.157]    [Pg.160]    [Pg.469]    [Pg.158]    [Pg.591]    [Pg.820]    [Pg.118]    [Pg.122]    [Pg.196]    [Pg.9]    [Pg.26]    [Pg.71]    [Pg.71]    [Pg.318]   


SEARCH



Cyclopentadiene diene synthesis with

Cyclopentadiene peroxide synthesis

Cyclopentadiene synthesis from dicyclopentadiene

Cyclopentadienes synthesis

Cyclopentadienes synthesis

Cyclopentadienyl-metal compounds synthesis from cyclopentadiene

Syntheses Utilizing Cyclopentadiene

Tris cyclopentadiene, synthesis

Vinyl cyclopentadiene synthesis

© 2024 chempedia.info