Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexenes, preparation

Diacetoxylation of various conjugated dienes including cyclic dienes has been extensively studied. 1,3-Cyclohexadiene was converted into a mixture of isomeric l,4-diacetoxy-2-cyclohexenes of unknown stereochemistry[303]. The stereoselective Pd-catalyzed 1,4-diacetoxylation of dienes is carried out in AcOH in the presence of LiOAc and /or LiCI and beiizoquinone[304.305]. In the presence of acetate ion and in the absence of chloride ion, /rau.v-diacetox-ylation occurs, whereas addition of a catalytic amount of LiCl changes the stereochemistry to cis addition. The coordination of a chloride ion to Pd makes the cis migration of the acetate from Pd impossible. From 1,3-cyclohexadiene, trans- and ci j-l,4-diacetoxy-2-cyclohexenes (346 and 347) can be prepared stereoselectively. For the 6-substituted 1,3-cycloheptadiene 348, a high diaster-eoselectivity is observed. The stereoselective cij-diacetoxylation of 5-carbo-methoxy-1,3-cyclohexadiene (349) has been applied to the synthesis of dl-shikimic acid (350). [Pg.68]

It is possible to prepare 1-acetoxy-4-chloro-2-alkenes from conjugated dienes with high selectivity. In the presence of stoichiometric amounts of LiOAc and LiCl, l-acetoxy-4-chloro-2-hutene (358) is obtained from butadiene[307], and cw-l-acetoxy-4-chloro-2-cyclohexene (360) is obtained from 1.3-cyclohexa-diene with 99% selectivity[308]. Neither the 1.4-dichloride nor 1.4-diacetate is formed. Good stereocontrol is also observed with acyclic diene.s[309]. The chloride and acetoxy groups have different reactivities. The Pd-catalyzed selective displacement of the chloride in 358 with diethylamine gives 359 without attacking allylic acetate, and the chloride in 360 is displaced with malonate with retention of the stereochemistry to give 361, while the uncatalyzed reaction affords the inversion product 362. [Pg.69]

Reasoning backward however we know that we can prepare cyclohexane by hydro genation of cyclohexene We 11 therefore use this reaction as the last step m our pro posed synthesis... [Pg.265]

Recognizing that cyclohexene may be prepared by dehydration of cyclohexanol a prac tical synthesis of cyclohexane from cyclohexanol becomes apparent... [Pg.265]

Fig. 7. The effect of preparation on the pore size distribution (a), titanium dispersion (b), and the activity for epoxidation of cyclohexene (c) of titania—siUca containing 10 wt % titania and calcined in air at 673 K. Sample A, low-temperature aerogel Sample B, high-temperature aerogel Sample C, aerogel. Fig. 7. The effect of preparation on the pore size distribution (a), titanium dispersion (b), and the activity for epoxidation of cyclohexene (c) of titania—siUca containing 10 wt % titania and calcined in air at 673 K. Sample A, low-temperature aerogel Sample B, high-temperature aerogel Sample C, aerogel.
Isophorone usually contains 2—5% of the isomer P-isophorone [471-01-2] (3,5,5-trimethyl-3-cyclohexen-l-one). The term a-isophorone is sometimes used ia referring to the a,P-unsaturated ketone, whereas P-isophorone connotes the unconjugated derivative. P-lsophorone (bp 186°C) is lower boiling than isophorone and can be converted to isophorone by distilling at reduced pressure ia the presence of -toluenesulfonic acid (188). Isophorone can be converted to P-isophorone by treatment with adipic acid (189) or H on(Ill) acetylacetoate (190). P-lsophorone can also be prepared from 4-bromoisophorone by reduction with chromous acetate (191). P-lsophorone can be used as an iatermediate ia the synthesis of carotenoids (192). [Pg.494]

The stmcture of vitamin A [11103-57-4] and some of the important derivatives are shown in Figure 1. The parent stmcture is aH-Zra/ j -retinol [68-26-8] and its lUPAC name is (all-E)-3,7-dimethyl-9-(2,6,6-trimethyl-l-cyclohexen-l-yl)-2,4,6,8-nonatetraen-l-ol (1). The numbering system for vitamin A derivatives parallels the system used for the carotenoids. In older Hterature, vitamin A compounds are named as derivatives of trimethyl cyclohexene and the side chain is named as a substituent. For retinoic acid derivatives, the carboxyl group is denoted as C-1 and the trimethyl cyclohexane ring as a substituent on C-9. The stmctures of vitamin A and -carotene were elucidated by Karrer in 1930 and several derivatives of the vitamin were prepared by this group (5,6). In 1935, Wald isolated a substance found in the visual pigments of the eye and was able to show that this material was identical with Karrer s retinaldehyde [116-31-4] (5) (7). [Pg.95]

Chiral Alcohols and Lactones. HLAT) has been widely used for stereoselective oxidations of a variety of prochiral diols to lactones on a preparative scale. In most cases pro-(3) hydroxyl is oxidized irrespective of the substituents. The method is apphcable among others to tit-1,2-bis(hydroxymethyl) derivatives of cyclopropane, cyclobutane, cyclohexane, and cyclohexene. Resulting y-lactones are isolated in 68—90% yields and of 100% (164,165). [Pg.347]

This procedure illustrates a new method for the preparation of 6-alkyl-a,g-unsaturated esters by coupling lithium dialkylcuprates with enol phosphates of g-keto esters. The procedure for the preparation of methyl 2-oxocyclohexanecarboxylate described in Part A Is based on one reported by Ruest, Blouin, and Deslongcharaps. Methyl 2-methyl-l-cyc1ohexene-l-carboxylate has been prepared by esterification of the corresponding acid with dlazomethane - and by reaction of methyl 2-chloro-l-cyclohexene-l-carboxyl ate with lithium dimethylcuprate. -... [Pg.21]

Other methods for the preparation of cyclohexanecarboxaldehyde include the catalytic hydrogenation of 3-cyclohexene-1-carboxaldehyde, available from the Diels-Alder reaction of butadiene and acrolein, the reduction of cyclohexanecarbonyl chloride by lithium tri-tcrt-butoxy-aluminum hydride,the reduction of iV,A -dimethylcyclohexane-carboxamide with lithium diethoxyaluminum hydride, and the oxidation of the methane-sulfonate of cyclohexylmethanol with dimethyl sulfoxide. The hydrolysis, with simultaneous decarboxylation and rearrangement, of glycidic esters derived from cyclohexanone gives cyclohexanecarboxaldehyde. [Pg.15]

In preparing cyclohexene by the dehydration of cyclo-hexanol with sulfuric acid (Org. Syn. Coll. Vol. i, 177) the time can be shortened to about two hours by boiling the mixture in a round-bottomed flask provided with a reflux condenser with water maintained at about 75°. A tube at the top leads to a downward cold-water condenser. [Pg.27]

Cyclohexene can be prepared on a large scale still more rapidly and efficiently by the distillation of cyclohexanol over silica geP or, better, activated alumina. Using a 25-mm. tube packed with 8- to 14-mesh activated alumina (Aluminum Company of America) and heated to 380-450 over a 30-cm. length, 1683 g. of cyclohexanol was dehydrated in about four hours. After separating the water, drying with sodium sulfate, and fractionating with a simple column, 1222 g. (89 per cent yield) of cyclohexene, b.p. 82-84 , was obtained. [Pg.27]

Cyclohexenone has been prepared by dehydrohalogenation of 2-bromocyclohexanone, by the hydrolysis and oxidation of 3-chlorocyclohexene, by the dehydration of a-hydroxycyclohexa- ione, by the oxidation of cyclohexene with chromic acid or hydrogen peroxide in the presence of a vanadium catalyst, by I lie addition of acroleiti to ethyl acetoacctate followed by cycliza-lion, hydroly.sis, and decar])oxylation, by the reduction of N,N-dimelliyliiniline with sodium and ethanol itt liquid ammonia... [Pg.15]

Cyclohexyl bromide, for exfflnple, is converted to cyclohexene by sodium ethoxide in ethanol over 60 times faster than cyclohexyl chloride. Iodide is the best leaving group in a dehydrohalogenation reaction, fluoride the poorest. Fluoride is such a poor leaving group that alkyl fluorides are rarely used as starting materials in the preparation of alkenes. [Pg.214]

A novel ring closure was discovered by Stork (6) in which the pyrrolidine enamine of a cycloalkanone reacts with acrolein. The scheme illustrates the sequence in the case of 1-pyrrolidino-l-cyclohexene, and the cyclopentane compound was found to undergo the reaction analogously. The procedure details the preparation of the bicyclo adduct and its cleavage to 4-cyclooctenecarboxylic acid. [Pg.84]

In a 200-ml three-necked flask fitted with a dropping funnel (drying tube) is placed a solution of 13.4 g (0.12 mole) of 1-octene in 35 ml of THF. The flask is flushed with nitrogen and 3.7 ml of a 0.5 M solution of diborane (0.012 mole of hydride) in THF is added to carry out the hydroboration. (See Chapter 4, Section I regarding preparation of diborane in THF.) After 1 hour, 1.8 ml (0.1 mole) of water is added, followed by 4.4 g (0.06 mole) of methyl vinyl ketone, and the mixture is stirred for 1 hour at room temperature. The solvent is removed, and the residue is dissolved in ether, dried, and distilled. 2-Dodecanone has bp 119710 mm, 24571 atm. (The product contains 15 % of 5-methyl-2-undecane.) The reaction sequence can be applied successfully to a variety of olefins including cyclopentene, cyclohexene, and norbornene. [Pg.114]

A dry 5(X)-mI flask equipped with a thermometer, pressure-equalizing dropping funnel, and magnetic stirrer is flushed with nitrogen and then maintained under a static pressure of the gas. The flask is charged with 50 ml of tetrahydrofuran and 13.3 ml (0.15 mole) of cyclopentene, and then is cooled in an ice bath. Conversion to tricyclo-pentylborane is achieved by dropwise addition of 25 ml of a 1 M solution of diborane (0.15 mole of hydride see Chapter 4, Section 1 for preparation) in tetrahydrofuran. The solution is stirred for 1 hour at 25° and again cooled in an ice bath, and 25 ml of dry t-butyl alcohol is added, followed by 5.5 ml (0.05 mole) of ethyl bromoacetate. Potassium t-butoxide in /-butyl alcohol (50 ml of a 1 M solution) is added over a period of 10 minutes. There is an immediate precipitation of potassium bromide. The reaction mixture is filtered from the potassium bromide and distilled. Ethyl cyclopentylacetate, bp 101730 mm, 1.4398, is obtained in about 75% yield. Similarly, the reaction can be applied to a variety of olefins including 2-butene, cyclohexene, and norbornene. [Pg.115]

The cyclodimerization of 1,3-butadiene was carried out in [BMIM][BF4] and [BMIM][PF(3] with an in situ iron catalyst system. The catalyst was prepared by reduction of [Fe2(NO)4Cl2] with metallic zinc in the ionic liquid. At 50 °C, the reaction proceeded in [BMIM][BF4] to give full conversion of 1,3-butadiene, and 4-vinyl-cyclohexene was formed with 100 % selectivity. The observed catalytic activity corresponded to a turnover frequency of at least 1440 h (Scheme 5.2-24). [Pg.251]

Another method for preparing alkyl halides from alkenes is by reaction with jV-brotnosuccinimide (abbreviated NBS) in the presence of light to give products resulting from substitution of hydrogen by bromine at the allylic position—the position next to the double bond. Cyclohexene, for example, gives 3-bromo-cyclohexene. [Pg.339]

The 1,2-dibromocyclohcxane was prepared by the method of Snyder and Brooks 2 If the cyclohexene is cooled to ca —30° with a dry ice-isopropyl alcohol bath and the bromine is not diluted, it is possible to run this preparation on a threefold scale in one-third of the recorded time The product was always purified by the recommended procedure. [Pg.32]


See other pages where Cyclohexenes, preparation is mentioned: [Pg.70]    [Pg.209]    [Pg.201]    [Pg.214]    [Pg.247]    [Pg.468]    [Pg.119]    [Pg.153]    [Pg.128]    [Pg.27]    [Pg.29]    [Pg.40]    [Pg.18]    [Pg.201]    [Pg.247]    [Pg.215]    [Pg.212]    [Pg.170]    [Pg.215]    [Pg.215]    [Pg.196]    [Pg.23]    [Pg.6]    [Pg.37]    [Pg.742]    [Pg.748]    [Pg.228]   


SEARCH



2-Cyclohexen-1-thiol, preparation

Cyclohexanone, preparation from cyclohexene

Cyclohexene oxide, preparation

Cyclohexene preparation

Cyclohexene preparation

Cyclohexene, l-acetoxy-2-methylreaction with tributylmethoxytin preparation of organotin enol ethers

Methylene iodide, reaction with zinccopper couple and cyclohexene in preparation of methylenecyclohexane

Preparation of 4,4-Dimethyl-2-Cyclohexen-l-One

Preparation of Cyclohexene-Sulfur Dioxide Copolymer

© 2024 chempedia.info