Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexene oxide epoxide

Epoxides and aziridines are also capable of electrophilic subsitution of indoles. Indolylmagncsium bromide and cyclohexene oxide react to give 3-(lrans-2-hydroxycyclohexyl)indole[14]. Reaction of indoles with epoxides also occurs in the presence of Lewis acids. For example, indole reacts with methyl 2S,3R-epoxybutanoate at C3 with inversion of configuration[15]. [Pg.106]

Asymmetric ring-opening of saturated epoxides by organoctiprates has been studied, hut only low enantioselectivities f -c 1596 ee) have so far been obtained [49, 50]. Muller et al., for example, have reported that tlie reaction between cyclohexene oxide and MeMgBr, catalyzed by 1096 of a chiral Schiffhase copper complex, gave froiis-2-metliylcyclohexanol in 5096 yield and with 1096 ee [50]. [Pg.283]

NOL-based systems for addition of (substituted) anilines to meso epoxides. Hou found that a ytterbium-BI NO L complex catalyzed desymmetrization of cyclohexene oxide in up to 80% ee [15], Shibasaki demonstrated that a praseodymium-BINOL complex could promote addition of p-anisidine to several epoxides in moderate yields with modest enantioselectivities (Scheme 7.7) [16]. [Pg.234]

An alternative method for generating enriched 1,2-diols from meso-epoxides consists of asymmetric copolymerization with carbon dioxide. Nozaki demonstrated that a zinc complex formed in situ from diethylzinc and diphenylprolinol catalyzed the copolymerization with cyclohexene oxide in high yield. Alkaline hydrolysis of the isotactic polymer then liberated the trans diol in 94% yield and 70% ee (Scheme 7.20) [40]. Coates later found that other zinc complexes such as 12 are also effective in forming isotactic polymers [41-42]. [Pg.242]

Although enolates, their equivalents, and otherwise stabilized carbanions would be interesting candidates for ARO of weso-epoxides, no efficient catalytic method has been developed to date. Crotti reported that 20 mol% of (salen)Cr-Cl complex 2 promoted the addition of the lithium enolate of acetophenone to cyclohexene oxide with moderate ees (Scheme 7.26) [50], However, the very low yields obtained... [Pg.246]

The potential of such reaction sequences for the generation of molecular diversity was also demonstrated by the synthesis of a library of heterocycles. Epoxide ring-opening with hydrazine and subsequent condensation with (3-diketones or other bifunctional electrophiles gave rise to a variety of functionalized heterocyclic structures in high purity [34]. A selection based on the substrate derived from cyclohexene oxide is shown in Scheme 12.12. [Pg.454]

Conversion of epoxides into /3-hydroxy isocyanides—preparation of trans-2-isocyanocyclohexanol, using TMSCN to open cyclohexene oxide with trans stereochemistry, followed by KF/MeOH cleavage of the intermediate silyl ether. [Pg.163]

By studying the NMR spectra of the products, Jensen and co-workers were able to establish that the alkylation of (the presumed) [Co (DMG)2py] in methanol by cyclohexene oxide and by various substituted cyclohexyl bromides and tosylates occurred primarily with inversion of configuration at carbon i.e., by an 8 2 mechanism. A small amount of a second isomer, which must have been formed by another minor pathway, was observed in one case (95). Both the alkylation of [Co (DMG)2py] by asymmetric epoxides 129, 142) and the reduction of epoxides to alcohols by cobalt cyanide complexes 105, 103) show preferential formation of one isomer. In addition, the ratio of ketone to alcohol obtained in the reaction of epoxides with [Co(CN)5H] increases with pH and this has been ascribed to differing reactions with the hydride (reduction to alcohol) and Co(I) (isomerization to ketone) 103) (see also Section VII,C). [Pg.353]

Epoxide-derived radicals are generated under very mild reaction conditions and are therefore valuable for intermolecular C-C bond-forming reactions [27,29]. The resulting products, 5-hydroxyketones, 5-hydroxyesters or 5-lactones constitute important synthetic intermediates. The first examples were reported by Nugent and RajanBabu who used a variety of epoxides, such as cyclohexene oxide and a Sharpless epoxide (Scheme 7). [Pg.41]

Reactions of 1 with epoxides involve some cycloaddition products, and thus will be treated here. Such reactions are quite complicated and have been studied in some depth.84,92 With cyclohexene oxide, 1 yields the disilaoxirane 48, cyclohexene, and the silyl enol ether 56 (Eq. 29). With ( )- and (Z)-stilbene oxides (Eq. 30) the products include 48, ( > and (Z)-stilbenes, the E- and Z-isomers of silyl enol ether 57, and only one (trans) stereoisomer of the five-membered ring compound 58. The products have been rationalized in terms of the mechanism detailed in Scheme 14, involving a ring-opened zwitterionic intermediate, allowing for carbon-carbon bond rotation and the observed stereochemistry. [Pg.262]

The resulting material is active for the gas phase epoxidation of simple olefins. Addition of cyclohexene resulted in the formation of cyclohexene oxide as the sole volatile product, detected by GC/MS. [Pg.425]

The catalyst can be regenerated by evacuation to remove cyclohexene oxide and addition of fresh BuOOH at the end of the first kinetic run. When a second dose of cyclohexene vapor was introduced to 3, very similar kinetic behavior was observed, Figure lb. However, the smaller absorbance change imphes that less cyclohexene was epoxidized, likely because of incomplete removal of the epoxide which blocks the active sites. [Pg.426]

For the Ti(OiPr)4/silica system, the advantage of MCM-41 (a mesoporous silica) over an amorphous silica is not evident either in terms of activity or selectivity for the epoxidation of cyclohexene with H202 in tert-butyl-alcohol.148 Nevertheless, deactivation of the catalysts seems slower, although the selectivity of the recovered catalysts is also lower (allylic oxidation epoxidation = 1 1). Treatment of these solids with tartaric acid improves the properties of the Ti/silica system, but not of the Ti/MCM-41 system, although NMR,149 EXAFS,150 and IR151 data suggest that the same titanium species are present on both supports. [Pg.460]

The simplest model compound is cyclohexene oxide III. Monomers IV, V and VII represent different aspects of the ester portion of I, while monomers VII and VIII reflect aspects of both the monomer I and the polymer which is formed by cationic ring-opening polymerization. Monomers IV-VII were prepared using a phase transfer catalyzed epoxidation based on the method of Venturello and D Aloisio (6) and employed previously in this laboratory (7). This method was not effective for the preparation of monomer VIII. In this specific case (equation 4), epoxidation using Oxone (potassium monoperoxysulfate) was employed. [Pg.86]

Titanium enolates.1 This Fischer carbene converts epoxides into titanium enolates. In the case of cyclohexene oxide, the product is a titanium enolate of cyclohexanone. But the enolates formed by reaction with 1,2-epoxybutane (equation I) or 2,3-epoxy butane differ from those formed from 2-butanone (Equation II). Apparently the reaction with epoxides does not involve rearrangement to the ketone but complexation of the epoxide oxygen to the metal and transfer of hydrogen from the substrate to the methylene group. [Pg.49]

G. Bellucci, C. Chiappe, F. Marioni, Enantioselectivity of the Enzymatic Hydrolysis of Cyclohexene Oxide and ( )-l-Methylcyclohexene Oxide A Comparison between Microsomal and Cytosolic Epoxide Hydrolases , J. Chem. Soc., Perkin Trans. 1 1989, 2369 -2373. [Pg.677]

The vinyloxirane reaction was later extended to methylidene cyclohexene oxide and to related meso derivatives [53]. The effects of the diastereomeric ligands 42 and 43 (Fig. 8.5), derived from (S)-binaphthol and (S, S)- or (R, R)-feis-phenylethyl-amine respectively, were investigated. In the case of kinetic resolution of racemic methylidene cyclohexane epoxide 45 with Et2Zn, ligand 42 produced better yields, regioselectivity, and enantioselectivity than 43 (Scheme 8.27). [Pg.284]

Alkylation reactions reveal a mechanistic aspect of the cuprate reactions different from that of addition reactions. Theoretical analyses of reactions of alkyl halides (Mel and MeBr) [123, 124] and epoxides (ethylene oxide and cyclohexene oxide) [124] with lithium cuprate clusters (Me2CuLi dimer or Me2CuLi-LiCl, Scheme 10.11) resolved long-standing questions on the mechanism of the alkylation reaction. Density functional calculations showed that the rate-determining step of the... [Pg.330]

A similar reaction pathway was found for the Sn2 substitution of an epoxide with a lithium cuprate cluster [124]. In contrast to that in the MeBr reaction, the stereochemistry of the electrophilic carbon center is already inverted in the transition state, providing the reason for the preferred trans-diaxial epoxide-opening widely observed in synthetic studies. The TS for the Sn2 reaction of cyclohexene oxide is shown in Eq. 10.12. [Pg.332]

The catalytic activities of the supported Co-POM catalysts were tested by the epoxidation of eyelohexene to cyclohexene oxide in the presence of isobutyraldehyde [95]. [Pg.285]

In the synthesis of cyclohexene oxide from cyclohexene shown, this does implicate the less favourable diaxial conformer in the epoxide-forming step. Cyclohexene oxide contains a c/s-fused ring system, the only arrangement possible, since the three-membered ring is necessarily planar (see Section 3.5.2). [Pg.290]

It is also possible to desymmetiize a meso epoxide in the alternating copolymerization. Thus, asymmetric alternating copolymerization of cyclohexene oxide with CO2 catalyzed by a dimeric zinc complex provides a polycarbonate in which the diol unit is optically active with 80% ee. (See Scheme 4.24.)... [Pg.124]

SchOllkopf et al. reacted lithiated isocyanides with epoxides to obtain 3-hydroxyalkyl isocyanides. The reaction was also performed with cyclohexene oxide, and the hydroxyisocyanate formed was cyclized to oxazines with copper(I) oxide, resulting in a diastereomeric mixture of 174 and 175 (76LA2105 86AG755). Irradiation of aliphatic dieneamides yielded a variety of dihydrooxazines of type 167 (88T1959). [Pg.377]

From the NMR spectrum of copolymers produced from cyclohexene oxide and carbon dioxide it is difficult to assess low levels of asymmetric induction, i.e., low degrees of desymmetrization in the epoxide ring-opening step. In order to determine the extent of asymmetric induction it is necessary to hydrolyze the copolymer leading to the tra s-cyclohexane-l,2,-diol and examine the enantiomeric excess (4) [22]. Figure 4 shows the NMR spectrum in the carbonate region of atactic copolymer produced from cyclohexene oxide and CO2 using an achiral (salen)CrX catalyst. [Pg.8]

Lee and coworkers have reported on the use of the highly active and selective cobalt(III) catalyst depicted in Fig. 12 for the terpolymerization of propylene oxide and various epoxides with CO2, including cyclohexene oxide, 1-hexene oxide, and 1-butene oxide [61]. Catalytic activities ranged from 4,400-14,000 h at a CO2... [Pg.23]


See other pages where Cyclohexene oxide epoxide is mentioned: [Pg.93]    [Pg.96]    [Pg.1109]    [Pg.1231]    [Pg.539]    [Pg.70]    [Pg.215]    [Pg.475]    [Pg.301]    [Pg.314]    [Pg.157]    [Pg.591]    [Pg.324]    [Pg.335]    [Pg.111]    [Pg.188]    [Pg.214]    [Pg.227]    [Pg.17]    [Pg.22]    [Pg.23]   


SEARCH



Cyclohexene epoxides

Cyclohexene oxide

Cyclohexene, oxidation

Cyclohexenes epoxidation

Epoxidation oxidant

Epoxide oxidation

Epoxides oxidation

© 2024 chempedia.info