Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexanone selectivity

Aerobic oxidation of cyclohexane to cyclohexanol or cyclohexanone over Au catalysts has also been studied under solvent-free conditions and without radical initiators [201-203]. Gold on A1203 was relatively cyclohexanol selective while Au supported on more acidic supports such as silica exhibited cyclohexanone selective [201, 202]. Gold on MCM-41 showed a good selectivity to cyclohexanone of 76% accompanied by the formation of cyclohexanol (21%) at 19% conversion [202]. [Pg.116]

Co-catalyst TfC) Time (h) Cyclohexane conversion (%) AA selectivity (%) Cyclohexanone selectivity (%)... [Pg.398]

Nitrocellulose lacquers can be formulated with a large number of ketone solvents. Acetone, a fast evaporating solvent, will tolerate large additions of cheaper aromatic diluents to the nitrocellulose lacquers. The low viscosity of acetone and the hydrocarbon additions affords low solution viscosities. Other ketones that are useful as nitrocellulose solvents and that have high aliphatic and aromatic dilution ratios include MEK and MIBK. Additional ketones that find use in nitrocellulose lacquers include methyl /i-amyl ketone, methyl isoamyl ketone, dipropyl ketone, diisobutyl ketone, and cyclohexanone. Selection of the ketone often will depend on the desired evaporation rate. [Pg.260]

Cyclohexane. The LPO of cyclohexane [110-82-7] suppUes much of the raw materials needed for nylon-6 and nylon-6,6 production. Cyclohexanol (A) and cyclohexanone (K) maybe produced selectively by using alow conversion process with multiple stages (228—232). The reasons for low conversion and multiple stages (an approach to plug-flow operation) are apparent from Eigure 2. Several catalysts have been reported. The selectivity to A as well as the overall process efficiency can be improved by using boric acid (2,232,233). K/A mixtures are usually oxidized by nitric acid in a second step to adipic acid (233) (see Cyclohexanol and cyclohexanone). [Pg.344]

Dicyclohexylarnine may be selectively generated by reductive alkylation of cyclohexylamine by cyclohexanone (15). Stated batch reaction conditions are specifically 0.05—2.0% Pd or Pt catalyst, which is reusable, pressures of 400—700 kPa (55—100 psi), and temperatures of 75—100°C to give complete reduction in 4 h. Continuous vapor-phase amination selective to dicyclohexylarnine is claimed for cyclohexanone (16) or mixed cyclohexanone plus cyclohexanol (17) feeds. Conditions are 5—15 s contact time of <1 1 ammonia ketone, - 3 1 hydrogen ketone at 260°C over nickel on kieselguhr. With mixed feed the preferred conditions over a mixed copper chromite plus nickel catalyst are 18-s contact time at 250 °C with ammonia alkyl = 0.6 1 and hydrogen alkyl = 1 1. [Pg.208]

We present here examples of this condensation with an aromatic aldehyde and a cyclic ketone. Both of these examples are useful because, although other methods are available for their preparation, problems often attend these syntheses. In the synthesis of cyclohexy11deneaceton1tr11e, for example, the standard method results exclusively In the g.y-lsomer and none of the a,g-Isomer. In Part A of this procedure, cyclohexanone Is condensed with acetonitrile to give predominantly the conjugated Isomer (80-83%) whicfi is then separated from the nonconjugated isomer by selective bromination. [Pg.184]

The selective protection of the 17-ketone is difficult to achieve in the presence of other carbonyl groups on account of the reduced reactivity of cyclopent-anones as compared to cyclohexanones. On the other hand, cleavage of a... [Pg.397]

The tetrasubstituted isomer of the morpholine enamine of 2-methyl-cyclohexanone (20) because cf the diminished electronic overlap should be expected to exhibit lower degree of enamine-type reactivity toward electrophilic agents than the trisubstituted isomer. This was demonstrated to be the case when the treatment of the enamine with dilute acetic acid at room temperature resulted in the completely selective hydrolysis of the trisubstituted isomer within 5 min. The tetrasubstituted isomer was rather slow to react and was 96% hydrolyzed after 22 hr (77). The slowness might also be due to the intermediacy of quaternary iminium ion 23, which suffers from a severe. 4< strain 7,7a) between the equatorial C-2 methyl group and the methylene group adjacent to the nitrogen atom, 23 being formed by the stereoelectronically controlled axial protonation of 20. [Pg.9]

In the acylation of enamines derived from 3-substituted cyclohexanones, 6-acylated products were favored over 2-acylated products (398), thus revealing another selective enamine reaction sequence. The use of oxalyl bromide for the acylation of enamines has also been described (399). [Pg.389]

Recendy, Darzens reaction was investigated for its synthetic applicability to the condensation of substituted cyclohexanes and optically active a-chloroesters (derived from (-)-phenylmenthol). In this report, it was found that reaction between chloroester 44 and cyclohexanone 43 provided an 84% yield with 78 22 selectivity for the axial glycidic ester 45 over equatorial glycidic ester 46 both having the R configuration at the epoxide stereocenter. [Pg.19]

When an enolate is forced to take the E configuration, e.g, the enolate derived from cyclohexanone, predominant formation of the anti-aldol might be expected. Surprisingly, early experiments gave more or less stereorandom results in that the reaction with benzaldehyde gave a ratio of. vvtt/ant/ -aldols of 48 521B 23, Contrarily, recent investigations24 reveal a substantial anti selectivity (16 84), which is lowered in a dramatic manner (50 50) by the presence of lithium salts. Thus, the low stereoselectivity in the early experiments may be attributed to impurities of lithium salts or lithium hydroxide. [Pg.457]

Using 3-substituted cyclohexanones the /rans-diastereoselective synthesis of decalones and octahydro-1 //-indenones may be achieved 164 169. This method has been applied, for instance, in the synthesis of 19-norsteroids. In a related Michael addition the lithium enolate of (R)-5-trimethylsilyl-2-cyclohexenone reacts with methyl 2-propenoate selectively tram to the trimethylsilyl substituent. Subsequent intramolecular ring closure provides a single enantiomer of the bicyclo[2.2.2]octane170 (see also Section 1.5.2.4.4.). [Pg.971]

The Michael additions of chiral cycloalkanone imines or enamines, derived from (FV l-l-phcnyl-ethanamine or (5)-2-(methoxymethyl)pyrrolidine, are highly diastereofacially selective reactions providing excellent routes to 2-substituted cycloalkanones. This is illustrated by the addition of the enamine of (S)-2-(methoxymethyl)pyrrolidine and cyclohexanone to 2-(aryl-methylene)-l,3-propanedioates to give, after hydrolysis, the (2 5,a.S )-oxodicstcrs in 35-76% yield with d.r. (2 S,aS)/(2 S,a/ ) 94 6- > 97 3 and 80-95% ee214. [Pg.982]

The stereochemical outcome of the addition of lithium enolates of aldehydes and ketones to nitroalkenes is dependent upon the geometry of the nitroalkene and the enolate anion. The synjanti selectivity in the reaction of the lithium enolates of propanal, eyelopentanone and cyclohexanone with ( )- and (Z)-l-nitropropene has been reported1. [Pg.1011]

As the WT CHMO was known to react (S) selectively with simple four-substituted cyclohexanone derivatives [84—87], it was logical to test mutant 1-K2-F5 as a catalyst in the BV reaction of other ketones. For example, when 4-methoxycyclohexanone (38) was subjected to the BV reaction catalyzed by mutant 1-K2-F5, almost complete enantioselectivity was observed in favor of the (S)-lactone (39) (98.5% ee), in contrast to the WT, which is considerably less selective (78% ee) (see Scheme 2.11) [89]. [Pg.51]

In one approach cyclohexane is autoxidized to a mixture of cyclohexanol and cyclohexanone in the presence of a Co or Mn naphthenate catalyst. This mixture is subsequently oxidized to adipic acid using nitric acid as the oxidant in the presence of a Cu Vv catalyst. An alternative method using dioxygen in combination with Co or Mn in HOAc gives lower selectivities to adipic acid (70% vs 95%). Alternatively, autoxidation in the presence of stoichiometric amounts of boric acid produces cyclohexanol as the major product, which is subsequently oxidized to adipic acid using HNO3 in the presence of Cu Vv. The latter step produces substantial amounts of N2O as a waste product. [Pg.299]

The Oppenauer Oxidation. When a ketone in the presence of base is used as the oxidizing agent (it is reduced to a secondary alcohol), the reaction is known as the Oppenauer oxidation. This is the reverse of the Meerwein-Ponndorf-Verley reaction (16-23), and the mechanism is also the reverse. The ketones most commonly used are acetone, butanone, and cyclohexanone. The most common base is aluminum r r/-butoxide. The chief advantage of the method is its high selectivity. Although the method is most often used for the... [Pg.1516]

Fukui [51] predicted the deformation of the LUMO of cyclohexanone by the orbital mixing rule [1,2] and explained the origin of the % facial selectivity of the reduction of cyclohexanone. Tomoda and Senju [52] calculated the LUMO densities on the... [Pg.79]

The LUMO of cyclohexanone 3 is an out-of-phase combination of the carbonyl It orbital with the orbital (5 in Fig. 4). The out-of-phase enviromnent disfavors attack from the face of the bonds (motif ii in Fig. 1). This leads to the axial attack of nucleophiles. The observed selectivities are in agreement with the orbital... [Pg.132]

Laube and Hollenstein [21, 61] studied the single crystal structures of cyclohexanone derivatives complexed with a Lewis acid and found pyramidalization of the carbonyl carbon (4, Fig. 4), in agreement with the observed selectivity [61]. [Pg.133]


See other pages where Cyclohexanone selectivity is mentioned: [Pg.189]    [Pg.368]    [Pg.189]    [Pg.368]    [Pg.25]    [Pg.523]    [Pg.425]    [Pg.349]    [Pg.707]    [Pg.177]    [Pg.234]    [Pg.301]    [Pg.215]    [Pg.296]    [Pg.271]    [Pg.142]    [Pg.122]    [Pg.296]    [Pg.111]    [Pg.8]    [Pg.10]    [Pg.1198]    [Pg.80]    [Pg.169]    [Pg.97]    [Pg.193]    [Pg.94]   
See also in sourсe #XX -- [ Pg.125 ]

See also in sourсe #XX -- [ Pg.125 ]

See also in sourсe #XX -- [ Pg.125 ]




SEARCH



© 2024 chempedia.info