Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexane catalytic

Yang M, Somorjai GA (2003) Evidence for cyclohexyl as a reactive surface intermediate during high-pressure cyclohexane catalytic reactions on Pt(l 11) by sum frequency generation vibrational spectroscopy. J Am Chem Soc 125 11131... [Pg.24]

Benzene can undergo addition reactions which successively saturate the three formal double bonds, e.g. up to 6 chlorine atoms can be added under radical reaction conditions whilst catalytic hydrogenation gives cyclohexane. [Pg.55]

For the refiner, the reduction in benzene concentration to 3% is not a major problem it is achieved by adjusting the initial point of the feed to the catalytic reformers and thereby limiting the amount of benzene precursors such as cyclohexane and Cg paraffins. Further than 3% benzene, the constraints become very severe and can even imply using specific processes alkylation of benzene to substituted aromatics, separation, etc. [Pg.258]

The most common stereoselective syntheses involve the formation and cleavage of cyclopentane and cyclohexane derivatives or their unsaturated analogues. The target molecule (aff-cts)-2-methyl-l,4-cyclohexanediol has all of its substituents on the same side of the ring. Such a compound can be obtained by catalytic hydrogenation of a planar cyclic precursor. Methyl-l,4-benzoquinone is an ideal choice (p-toluquinone M. Nakazaki, 1966). [Pg.209]

A reaction that introduces a second chirality center into a starting material that already has one need not produce equal quantities of two possible diastereomers Con sider catalytic hydrogenation of 2 methyl(methylene)cyclohexane As you might expect both CIS and trans 1 2 dimethylcyclohexane are formed... [Pg.309]

Isomerization. Isomerization is a catalytic process which converts normal paraffins to isoparaffins. The feed is usually light virgin naphtha and the catalyst platinum on an alumina or zeoflte base. Octanes may be increased by over 30 numbers when normal pentane and normal hexane are isomerized. Another beneficial reaction that occurs is that any benzene in the feed is converted to cyclohexane. Although isomerization produces high quahty blendstocks, it is also used to produce feeds for alkylation and etherification processes. Normal butane, which is generally in excess in the refinery slate because of RVP concerns, can be isomerized and then converted to alkylate or to methyl tert-huty ether (MTBE) with a small increase in octane and a large decrease in RVP. [Pg.185]

Gycloaliphatics and Aromatics. Cychc compounds (cyclohexane and benzene) are also important sources of petrochemical products (Fig. 14). Aromatics are ia high concentration ia the product streams from a catalytic reformer. When aromatics are needed for petrochemical manufacture, they are extracted from the reformer s product usiag solvents such as glycols (eg, the Udex process) and sulfolane. [Pg.215]

Benzene, toluene, and xylene are made mosdy from catalytic reforming of naphthas with units similar to those already discussed. As a gross mixture, these aromatics are the backbone of gasoline blending for high octane numbers. However, there are many chemicals derived from these same aromatics thus many aromatic petrochemicals have their beginning by selective extraction from naphtha or gas—oil reformate. Benzene and cyclohexane are responsible for products such as nylon and polyester fibers, polystyrene, epoxy resins (qv), phenolic resins (qv), and polyurethanes (see Fibers Styrene plastics Urethane POLYiffiRs). [Pg.216]

BASF. In the Badische process, cyclohexanone is produced by Hquid-phase catalytic air oxidation of cyclohexane to KA oil, which is a mixture of cyclohexanone and cyclohexanol, and is followed by vapor-phase catalytic dehydrogenation of the cyclohexanol in the mixture. Overall yields range from 75% at 10% cyclohexane conversion to 80% at 5% cyclohexane conversion. [Pg.429]

Dutch State Mines (Stamicarbon). Vapor-phase, catalytic hydrogenation of phenol to cyclohexanone over palladium on alumina, Hcensed by Stamicarbon, the engineering subsidiary of DSM, gives a 95% yield at high conversion plus an additional 3% by dehydrogenation of coproduct cyclohexanol over a copper catalyst. Cyclohexane oxidation, an alternative route to cyclohexanone, is used in the United States and in Asia by DSM. A cyclohexane vapor-cloud explosion occurred in 1975 at a co-owned DSM plant in Flixborough, UK (12) the plant was rebuilt but later closed. In addition to the conventional Raschig process for hydroxylamine, DSM has developed a hydroxylamine phosphate—oxime (HPO) process for cyclohexanone oxime no by-product ammonium sulfate is produced. Catalytic ammonia oxidation is followed by absorption of NO in a buffered aqueous phosphoric acid... [Pg.430]

Cyclohexanol. This alcohol is produced commercially by the catalytic air oxidation of cyclohexane or the catalytic hydrogenation of phenol. [Pg.425]

Dehydrogenation processes in particular have been studied, with conversions in most cases well beyond thermodynamic equihbrium Ethane to ethylene, propane to propylene, water-gas shirt reaction CO -I- H9O CO9 + H9, ethylbenzene to styrene, cyclohexane to benzene, and others. Some hydrogenations and oxidations also show improvement in yields in the presence of catalytic membranes, although it is not obvious why the yields should be better since no separation is involved hydrogenation of nitrobenzene to aniline, of cyclopentadiene to cyclopentene, of furfural to furfuryl alcohol, and so on oxidation of ethylene to acetaldehyde, of methanol to formaldehyde, and so on. [Pg.2098]

Concern for the conservation of energy and materials maintains high interest in catalytic and electrochemistry. Oxygen in the presence of metal catalysts is used in CUPROUS ION-CATALYZED OXIDATIVE CLEAVAGE OF AROMATIC o-DIAMINES BY OXYGEN (E,Z)-2,4-HEXADIENEDINITRILE and OXIDATION WITH BIS(SALI-CYLIDENE)ETHYLENEDIIMINOCOBALT(II) (SALCOMINE) 2,6-DI-important industrial method, is accomplished in a convenient lab-scale process in ALDEHYDES FROM OLEFINS CYCLOHEXANE-CARBOXALDEHYDE. An effective and useful electrochemical synthesis is illustrated in the procedure 3,3,6,6-TETRAMETHOXY-1,4-CYCLOHEX ADIENE. ... [Pg.129]

A route to phenol has been developed starting from cyclohexane, which is first oxidised to a mixture of cyclohexanol and cyclohexanone. In one process the oxidation is carried out in the liquid phase using cobalt naphthenate as catalyst. The cyclohexanone present may be converted to cyclohexanol, in this case the desired intermediate, by catalytic hydrogenation. The cyclohexanol is converted to phenol by a catalytic process using selenium or with palladium on charcoal. The hydrogen produced in this process may be used in the conversion of cyclohexanone to cyclohexanol. It also may be used in the conversion of benzene to cyclohexane in processes where benzene is used as the precursor of the cyclohexane. [Pg.637]

Reactions such as catalytic hydrogenation that take place at the less hindered side of a reactant are common in organic chemistr-y and are examples of steric effects on reactivity. Previously we saw steric effects on structure and stability in the case of cis and trans stereoisomers and in the preference for equatorial substituents on cyclohexane rings. [Pg.235]

A further simplification of the requirements for activity came from the preparation of two spasmolytic agents that completely lack the aromatic ring. Thus, double alkylation of phenylace-tonitrile (54) with 1,5-dibromopentane leads to the corresponding cyclohexane (55). This intermediate is then saponified and the resulting acid (56) esterified with w,w-diethylethanolamine. Catalytic reduction of the aromatic ring affords dicyclonine (51). ... [Pg.36]

Figure 10-11. The Institut Francais du Petiole process for the hydrogenation of benzene to cyclohexane " (1) liquid-phase reactor, (2) heat exchanger, (3) catalytic pot (acts as a finishing reactor when conversion of the main reactor drops below the required level), (4) high-pressure separator, (5) stabilizer. Figure 10-11. The Institut Francais du Petiole process for the hydrogenation of benzene to cyclohexane " (1) liquid-phase reactor, (2) heat exchanger, (3) catalytic pot (acts as a finishing reactor when conversion of the main reactor drops below the required level), (4) high-pressure separator, (5) stabilizer.
Assume that you are in a laboratory carrying out the catalytic hydrogenation of cyclohexene to cyclohexane. How could you use a mass spectrometer to determine when the reaction is finished ... [Pg.435]

The synthesis of the trisubstituted cyclohexane sector 160 commences with the preparation of optically active (/ )-2-cyclohexen-l-ol (199) (see Scheme 49). To accomplish this objective, the decision was made to utilize the powerful catalytic asymmetric reduction process developed by Corey and his colleagues at Harvard.83 Treatment of 2-bromocyclohexenone (196) with BH3 SMe2 in the presence of 5 mol % of oxazaborolidine 197 provides enantiomeri-cally enriched allylic alcohol 198 (99% yield, 96% ee). Reductive cleavage of the C-Br bond in 198 with lithium metal in terf-butyl alcohol and THF then provides optically active (/ )-2-cyclo-hexen-l-ol (199). When the latter substance is treated with wCPBA, a hydroxyl-directed Henbest epoxidation84 takes place to give an epoxy alcohol which can subsequently be protected in the form of a benzyl ether (see 175) under standard conditions. [Pg.616]

This is the same case with which in Eqs. (2)-(4) we demonstrated the elimination of the time variable, and it may occur in practice when all the reactions of the system are taking place on the same number of identical active centers. Wei and Prater and their co-workers applied this method with success to the treatment of experimental data on the reversible isomerization reactions of n-butenes and xylenes on alumina or on silica-alumina, proceeding according to a triangular network (28, 31). The problems of more complicated catalytic kinetics were treated by Smith and Prater (32) who demonstrated the difficulties arising in an attempt at a complete solution of the kinetics of the cyclohexane-cyclohexene-benzene interconversion on Pt/Al203 catalyst, including adsorption-desorption steps. [Pg.6]

The quantitative solution of the problem, i.e. simultaneous determination of both the sequence of surface chemical steps and the ratios of the rate constants of adsorption-desorption processes to the rate constants of surface reactions from experimental kinetic data, is extraordinarily difficult. The attempt made by Smith and Prater 82) in a study of cyclohexane-cyclohexene-benzene interconversion, using elegant mathematic procedures based on the previous theoretical treatment 28), has met with only partial success. Nevertheless, their work is an example of how a sophisticated approach to the quantitative solution of a coupled heterogeneous catalytic system should be employed if the system is studied as a whole. [Pg.17]

The production of alcohols by the catalytic hydrogenation of carboxylic acids in gas-liquid-particle operation has been described. The process may be based on fixed-bed or on slurry-bed operation. It may be used, for example, for the production of hexane-1,6-diol by the reduction of an aqueous solution of adipic acid, and for the production of a mixture of hexane-1,6-diol, pentane-1,5-diol, and butane-1,4-diol by the reduction of a reaction mixture resulting from cyclohexane oxidation (CIO). [Pg.76]


See other pages where Cyclohexane catalytic is mentioned: [Pg.281]    [Pg.281]    [Pg.405]    [Pg.407]    [Pg.408]    [Pg.408]    [Pg.409]    [Pg.477]    [Pg.177]    [Pg.177]    [Pg.181]    [Pg.39]    [Pg.168]    [Pg.182]    [Pg.425]    [Pg.215]    [Pg.9]    [Pg.174]    [Pg.23]    [Pg.147]    [Pg.50]    [Pg.111]    [Pg.97]    [Pg.203]   
See also in sourсe #XX -- [ Pg.398 ]




SEARCH



Catalytic hydrogenations cyclohexane

Cyclohexane catalytic cracking

Cyclohexane, catalytic production

Cyclohexanes, catalytic reactions with platinum catalysts

© 2024 chempedia.info