Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclobutadiene complexes substitution

Attempts to use in the alkynylation reaction not tin-substituted alkynes, but to couple 26 directly under the conditions developed by Heck, Cassar, Sono-gashira, and Hagihara, surprisingly enough gave rise to the formation of the corresponding amino-substituted cyclobutadiene complex 30 in good yields. [Pg.139]

The palladium catalyst is essential in this reaction, as was shown in control experiments to make sure that this was not a direct nucleophilic addition of the amine to the electron-poor (regarding the low lying LUMO ) cyclobutadiene ligand. A series of amino-substituted cyclobutadiene complexes have been synthesized by this methodology [29]. [Pg.139]

All of the ethynylated cyclobutadienes are completely stable and can be easily manipulated under ambient conditions, as long as the alkyne arms carry substituents other than H. For the deprotected alkynylated cyclobutadiene complexes, obtainable by treatment of the silylated precursors with potassium carbonate in methanol or tetrabutylammonium fluoride in THF, the stability is strongly dependent upon the number of alkyne substitutents on the cyclobutadiene core and the nature of the stabilizing fragment. In the tricarbonyUron series, 27b, 27c, 29 b, and 28b are isolable at ambient temperature and can be purified by sublimation or distillation under reduced pressure. The corresponding tetraethynylated complex 63 e, however, is not stable under ambient conditions as a pure substance but can be stored as a dilute solution in dichloro-methane. It can be isolated at 0°C and kept for short periods of time with only... [Pg.151]

Although benzenes substituted by six carbon, nitrogen, oxygen, silicon, and sulfur are well known [23-29], such compounds are exceptionally limited in the field of phosphorus chemistry. Benzenes carrying six phosphorus substituents have not been synthesized and only limited compounds such as tetraphosphoryl- [30, 31] or tetraphosphinobenzenes [32], tetraphosphorylquinone [33, 34], tetraphosphoryl-cyclobutadiene complexes [35, 36], and pentaphosphinocyclopentadienyl complexes [37] have been reported (Scheme 20). [Pg.25]

Co-free PAE). In PAE-CoCpl, the fluorescence quantum yield is only 18% of that observed for Co-free PAE, even though the quencher substitutes less than 0.1% of the aryleneethynylene units. The fluorescence in solution disappeared in PAE-CoCp4, where every fifth unit is a cyclobutadiene complex. The mechanism by which this quenching occurs is via the cobalt-centered MLCT states [82,83], conferred onto the polymer by the presence of cyclobutadiene complexes. Even in the solid state the polymers PAE-CoCpl-2 are nonemissive. It was therefore shown that incorporation of CpCo-stabilized cyclobutadiene complexes into PPEs even in small amounts leads to an efficient quenching of fluorescence in solution and in the solid state. Quenching occurs by inter- and intramolecular energy transfer [84]. [Pg.80]

The reaction of alkynes substituted with bulky groups on both carbons with Pd complexes leads to complexes of substituted cyclobutadienes. Treatment of PdCl2(PhCN)2 with t-BuC2Ph gives a cyclobutadiene complex (equation 45). A very interesting case of dimerization to a cyclobutadiene complex is provided by the strained seven-membered ring cyclic aUcyne (equation 46). [Pg.3571]

Reaction of cyclobutadiene-iron tricarbonyl with methylchlorothio-formate followed by hydrolysis gives rise to cyclobutadienecarboxylic acid-iron tricarbonyl (XII). A Curtius rearrangement of the acid azide derived from Complex XII affords aminocyclobutadiene-iron tricarbonyl (XIII). The dimethylaminomethyl derivative (XIV) is readily available through the Mannich reaction with formaldehyde and dimethylamine. The chloromercury cyclobutadiene complex (XV) is produced upon reaction of Complex III with Hg(OAc)2, followed by treatment with hydrochloric acid. In the simplest substitution reaction, treatment of cyclobutadiene-iron tricarbonyl with CF3COOD produces a mixture of deuterated derivatives of Complex III. [Pg.552]

The reduction of 3,4-dichlorocyclobutene (222) in the presence of metal carbonyls has been utilized to prepare the parent complex [223, MLn = Cr(CO)4, Mo(CO)3, W(CO)3, Fe(CO)3, Ru(CO)3 orCo2(CO)6] (equation 32) .Morerecently, reaction ofNi(CO)4 with 3,4-dihalocyclobutenes (X = Br or I) or with 222 in the presence of AICI3 produced the corresponding (cyclobutadiene)nickel dihalides . Methodology for the preparation of 1,2- or 1,3-disubstituted (cyclobutadiene)Fe(CO)3 complexes from 1,2- or 1,3-disubsli-tuted-3,4-dibromocyclobutenes has been presented - In turn, the substituted dibromo-cyclobutenes are prepared from squaric esters. The reaction of cz5-3,4-carbonyldioxycy-clobutene and substituted variants with l c2(CO)9 orNa2Fe(CO)4 also produces (cyclobu-tadiene)Fe(CO)3 complexes . Photolysis of a-pyrone generates 3-oxo-2-oxabicyclo [2.2.0]hex-5-ene (224) which undergoes photolysis with a variety of metal carbonyls to afford the parent cyclobutadiene complex 223 [MLn = CpV(CO)2, Fe(CO)3, CoCp. or RhCp] (equation 33) 2 0. [Pg.961]

Some highly substituted phospholium salts, e.g., (180), and phosphole oxides have been prepared by a ring-expansion reaction of aluminium chloride-cyclobutadiene complexes with dichlorophosphines. The [4 - - 2] dimer (181)... [Pg.32]

Variously substituted tricarbonyliron-cyclobutadiene complexes are readily prepared (Fitzpatrick et ah, 1965 Roberts et al., 1969 Agar et al., 1974) and cyclobutadiene complexes with other transition metals are known (Maitlis, 1966), but few of these have been used in organic synthesis. [Pg.57]

Several reviews have been published on electrophilic homocyclic and heterocyclic aromatic substitution. Other reviews and books of relevance include polychloro-aromatic compounds, annulenes and related compounds, cyclobutadiene-metal complexes/ substitution via heteroaromatic N-oxide rearrangements/ 7T-excessiveness in heteroaromatic compounds/ and special topics in heterocyclic chemistry. The book by Jones and Bean is a mine of information on pyrrole chemistry. ... [Pg.241]

The unfused cyclobutadiene system is stable in complexes with metals (see Chapter 3), but in these cases electron density is withdrawn from the ring by the metal and there is no aromatic quartet. In fact, these cyclobutadiene-metal complexes can be looked upon as systems containing an aromatic duet. The ring is square planar, the compounds undergo aromatic substitution, and NMR spectra of monosubstituted derivatives show that the C-2 and C-4 protons are equivalent. ... [Pg.60]

Tetramethyl- or tetraphenyl- (cyclobutadiene)nickel dihalides undergo reductive ligand substitution with nitrogen donor ligands such as 2,2 -bipyridine or 1,4-diaza-1,3-dienes with the addition of sodium metal237. The 2,2/-bipyridyl ligand is readily displaced and reaction of this complex with a variety of olefins and alkynes leads to cycloaddition reactions with the cyclobutadiene ligand. [Pg.969]

Neutral (cyclobutadiene)Fe(CO)3 complexes undergo thermal and photochemical ligand substitution with phosphines, with alkenes such as dimethyl fumarate and dimethyl maleate and with the nitrosonium cation to generate the corresponding (cyclobutadiene)Fe(CO)2L complexes15. These types of complexes are presumably intermediates in the reaction of (cyclobutadiene)Fe(CO)3 complexes with perfluorinated alkenes and alkynes to generate the insertion products 266 or 267 respectively (Scheme 70)15,238. [Pg.969]

The reaction of (cyclobutadiene)metal complexes with X2 results in the oxidative decomplexation to generate either dihalocyclobutenes or tetrahalocyclobutanes. In comparison, substitution of (cyclobutadiene)MLn complexes 223 [MLn = Fe(CO)3, CoCp, and RhCp] with a variety of carbon electrophiles has been observed (equation 34)15. Electrophilic acylation of 1-substituted (cyclobutadiene)Fe(CO)3 complexes gives a mixture of regioisomers predominating in the 1,3-disubstituted product and this has been utilized for the preparation of a cyclobutadiene cyclophane complex 272 (equation 35)246. For (cyclobutadiene)CoCp complexes, in which all of the ring carbons are substituted, electrophilic acylation occurs at the cyclopentadienyl ligand. [Pg.974]

Trimerization of 1-alkynes to substituted cyclobutadienes occurs in reactions of RhCl(l-alaninate)Cp with HC CR (R = Ph, tol), which afford Rh -C4HR2 (C=CR) Cp (310) possibly via intermediate dialkynylrhodium(III) complexes. Reductive coupling to an /j -diyne complex, which coordinates the third molecule of alkyne, is followed by further coupling to the rhodacyclopentadiene and reductive elimination of the cyclobutadiene (Scheme 72). ... [Pg.222]

By cobalt-lithium exchange, the group of Sekiguchi and coworkers generated several dilithium salts of variously substituted cyclobutadiene dianions . By the reaction of the functionalized acetylenes (e.g. compound 137) with CpCo(CO)2 (136), the corresponding cobalt sandwich complexes, related to compound 138, were obtained (Scheme 50). These can be interconverted into the dilithium salts of the accordant cyclobutadiene dianions (e.g. dilithium compound 139) by reaction with metallic lithium in THF. Bicyclic as well as tricyclic (e.g. dilithium compound 141, starting from cobalt complex 140) silyl substituted systems were generated (Scheme 51) . ... [Pg.969]


See other pages where Cyclobutadiene complexes substitution is mentioned: [Pg.486]    [Pg.139]    [Pg.893]    [Pg.961]    [Pg.150]    [Pg.250]    [Pg.151]    [Pg.160]    [Pg.21]    [Pg.2053]    [Pg.893]    [Pg.517]    [Pg.2052]    [Pg.2052]    [Pg.103]    [Pg.482]    [Pg.502]    [Pg.230]    [Pg.55]    [Pg.423]    [Pg.68]    [Pg.768]    [Pg.962]    [Pg.969]    [Pg.974]    [Pg.976]    [Pg.64]    [Pg.227]    [Pg.533]   
See also in sourсe #XX -- [ Pg.133 , Pg.134 ]




SEARCH



Complexes cyclobutadiene complex

Complexes substitution

Cyclobutadien

Cyclobutadiene

Cyclobutadiene complex

Cyclobutadienes

Cyclobutadienes complexes

© 2024 chempedia.info