Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions, allylic derivatives cycloadditions

Fig. 16 Cycloaddition reaction of 0-allyl derivative of D-glucose derives aldehyde with aniline... Fig. 16 Cycloaddition reaction of 0-allyl derivative of D-glucose derives aldehyde with aniline...
The presence of five-membered rings such as cyclopentanes, cyclopentenes, and dihydrofurans in a wide range of target molecules has led to a variety of methods for their preparation. One of the most successful of these is the use of trimethylenemethane [3 + 2] cycloaddition, catalysed by pal-ladium(O) complexes. The trimethylenemethane unit in these reactions is derived from 2-[ (trimethylsilyl)methyl]-2-propen- 1-yl acetate which is at the same time an allyl silane and an allylic acetate. This makes it a weak nucleophile and an electrophile in the presence of palladium(0). Formation of the palladium 7t-allyl complex is followed by removal of the trimethylsilyl group by nucleophilic attack of the resulting acetate ion, thus producing a zwitterionic palladium complex that can undergo cycloaddition reactions. [Pg.1334]

Stereoselective Diels-Alder reactions have been reported in several cases. Enantioselective Diels-Alder reactions of l-phenoxycarbonyl-l,2-dihydropyridine with 1-alkylated acryloyl-pyrazolidin-3-ones using a chiral cationic palla-dium-phophinooxazolidine catalyst afforded chiral isoquinuclidines with excellent enantioselectivity <2005TL5677>. Bismuth(lll) chloride-mediated diasteroselective intramolecular [4-f2] cycloaddition reactions of A-allyl derivatives of pyrazole aldehydes led to fused sulfur-containing pyrazole heterocycles <2003SC3063>. A highly diastereoselective intramolecular hetero-Diels-Alder approach toward tetracyclic pyrazoles from 5-(3-methyl-2-butenylthio)-3-methyl-l-phenyl-4-pyrazolecarboxaldehyde has been reported <1997SL1155>. [Pg.42]

Although interest in metal-catalyzed cycloaddition reactions of arynes has mostly focused on reactions with alkynes, they have also proved synthetically useful in reactions with other species, such as allyl derivatives, CO or allenes. [Pg.141]

The preceding study has demonstrated [2.2.1]bicycloheptenyl functionalized resins can be useful and interesting ene components in photoinitiated thiolene polymerizations. The addition of thiols to the unsaturation of this bicyclic system appears to be rapid and exothermic. The relative rates of this addition compared with allylic derivatives and vinyl ethers are quite favorable. The organic resins can be readily prepared from either polyols, f>olyamines, or acrylic precursors (Figure 10) and the yields are generally quite good. When acrylate esters are used as precursors, the cycloaddition reaction occurs spontaneously and no catalysis of the reaction is necessary. [Pg.173]

The most prominent use of ketenes is for [2 + 2] cycloaddition with imine for the construction of /3-lactam skeleton. When the Y group in Scheme 1 is vinyl or aryl group, the deprotonation of the activated a-proton is highly facilitated. In this context, the carbonylation of some allylic derivatives, for example, allyl bromide, allyl acetate, allyl phenyl ether, allyl methyl carbonate, allyl phenyl sulfone, and allyl phosphate, documented to form TT-allylpalladium intermediates is examined. It is interesting to note that only phosphate undergoes the cycloaddition to produce /3-lactam. The characteristic dependency of the stereochemistry on the reaction conditions, being contrary to the results in the usual base-induced cycloaddition is also intriguing. Scheme 2 presents the... [Pg.996]

Aldehydes take part in the cycloaddition to give the methylenetetrahydrofuran 178 by the co-catalysis of Pd and Sn compounds[115]. A similar product 180 is obtained by the reaction of the allyl acetate 179, which has a tributyltin group instead of a TMS group, with aldehydesfl 16]. The pyrrolidine derivative 182 is formed by the addition of the tosylimine 181 to 154[117]. [Pg.314]

Cycloaddition of COj with the dimethyl-substituted methylenecyclopropane 75 proceeds smoothly above 100 °C under pressure, yielding the five-membered ring lactone 76. The regiocheraistry of this reaction is different from that of above-mentioned diphenyl-substituted methylenecyclopropanes 66 and 67[61], This allylic lactone 76 is another source of trimethylenemethane when it is treated with Pd(0) catalyst coordinated by dppe in refluxing toluene to generate 77, and its reaction with aldehydes or ketones affords the 3-methylenetetrahy-drofuran derivative 78 as expected for this intermediate. Also, the lactone 76 reacts with a, /3-unsaturated carbonyl compounds. The reaction of coumarin (79) with 76 to give the chroman-2-one derivative 80 is an example[62]. [Pg.522]

The following compounds have been obtained from thiete 1,1-dioxide Substituted cycloheptatrienes, benzyl o-toluenethiosulfinate, pyrazoles, - naphthothiete 1,1-dioxides, and 3-subst1tuted thietane 1,1-dioxides.It is a dienophile in Diels-Alder reactions and undergoes cycloadditions with enamines, dienamines, and ynamines. Thiete 1,1-dioxide is a source of the novel intermediate, vinylsulfene (CH2=CHCH=SQ2). which undergoes cyclo-additions to strained olefinic double bonds, reacts with phenol to give allyl sulfonate derivatives or cyclizes unimolecularly to give an unsaturated sultene. - Platinum and iron complexes of thiete 1,1-dioxide have been reported. [Pg.215]

Another example of a [2s+2sh-1c+1co] cycloaddition reaction was observed by Barluenga et al. in the sequential coupling reaction of a Fischer carbene complex, a ketone enolate and allylmagnesium bromide [120]. This reaction produces cyclopentanol derivatives in a [2S+2SH-1C] cycloaddition process when -substituted lithium enolates are used (see Sect. 3.1). However, the analogous reaction with /J-unsubstituted lithium enolates leads to the diastereoselective synthesis of 1,3,3,5-tetrasubstituted cyclohexane- 1,4-diols. The ring skeleton of these compounds combines the carbene ligand, the enolate framework, two carbons of the allyl unit and a carbonyl ligand. Overall, the process can be considered as a for-... [Pg.112]

Diels-Alder reaction of dienophiles, N-allylic enamides and a,/l-unsaturated lactam derivatives with open chain and inner ring dienes is promoted by iodine [98]. Thus the cycloaddition of N-benzyl-N-methallyl acrylamide 147 with cyclo-pentadiene (1) proceeds smoothly in DMF at —78 °C in the presence of I2 (2 eq.) to give a prevalence of endo adduct l Vd) in 88% yield (Equation 4.17). [Pg.191]

Some examples of the lateral cyclization of suitable O-allyl and O-propargyl derivatives were discussed in CHEC-11(1996) <1996CHEC-II(8)747>. Thermal reaction of silyl diazoacetate 303 in xylene provides unspecific decomposition and a minor amount (about 2%) of a colorless solid can be precipitated with ether. The X-ray diffraction analysis identified the structure 305, which is a product of the lateral criss-cross cycloaddition of primarily formed azine 304 (Scheme 43) <2000T4139>. [Pg.411]

As shown in Scheme 2.21 Id, starting with N-allyl carbohydrate-nitrones (469), a series of chiral six- (470) and seven-membered(471) TV-heterocycles were synthesized (Scheme 2.227). A very interesting and useful aspect of this cycloaddition is the control of regioselectivity by the substitution at the nitrogen atom. Therefore, it is possible to direct reactions towards the syntheses of preferred six- or seven-membered heterocycles from carbohydrate derivatives (722). [Pg.307]

Cycloaddition of nitrone (508) to allyl alcohol at ambient temperature gave a mixture of four cycloadducts in a 23 5 4 1 ratio (Scheme 2.244). All of the adducts (509) are derived from the regiochemical approach opposite to the intramolecular pathway (Fig. 2.35). Formation of the cycloadduct in the intramolecular cycloaddition reaction is ascribed to a high preference for an endo-syn transition state, due to the constraint imposed by the short, three atom connecting chain (116). The major product in the intermolecular cycloaddition reaction was the exo-anti -(509) adduct (Scheme 2.244 and Fig. 2.35). [Pg.322]


See other pages where Cycloaddition reactions, allylic derivatives cycloadditions is mentioned: [Pg.258]    [Pg.2318]    [Pg.473]    [Pg.473]    [Pg.515]    [Pg.540]    [Pg.311]    [Pg.747]    [Pg.824]    [Pg.193]    [Pg.747]    [Pg.824]    [Pg.142]    [Pg.264]    [Pg.801]    [Pg.24]    [Pg.209]    [Pg.270]    [Pg.297]    [Pg.249]    [Pg.32]    [Pg.244]    [Pg.71]    [Pg.1]   


SEARCH



5-Allyl-derivatives

Allylation cycloadditions

Allylic derivatives

Allylic derivatives reactions

Cycloaddition reactions allylic derivatives

Cycloaddition reactions allylic derivatives

Cycloaddition reactions derivative

Cycloaddition reactions, allylic derivatives mechanisms

© 2024 chempedia.info