Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions, allylic derivatives

Another example of a [2s+2sh-1c+1co] cycloaddition reaction was observed by Barluenga et al. in the sequential coupling reaction of a Fischer carbene complex, a ketone enolate and allylmagnesium bromide [120]. This reaction produces cyclopentanol derivatives in a [2S+2SH-1C] cycloaddition process when -substituted lithium enolates are used (see Sect. 3.1). However, the analogous reaction with /J-unsubstituted lithium enolates leads to the diastereoselective synthesis of 1,3,3,5-tetrasubstituted cyclohexane- 1,4-diols. The ring skeleton of these compounds combines the carbene ligand, the enolate framework, two carbons of the allyl unit and a carbonyl ligand. Overall, the process can be considered as a for-... [Pg.112]

Cycloaddition of nitrone (508) to allyl alcohol at ambient temperature gave a mixture of four cycloadducts in a 23 5 4 1 ratio (Scheme 2.244). All of the adducts (509) are derived from the regiochemical approach opposite to the intramolecular pathway (Fig. 2.35). Formation of the cycloadduct in the intramolecular cycloaddition reaction is ascribed to a high preference for an endo-syn transition state, due to the constraint imposed by the short, three atom connecting chain (116). The major product in the intermolecular cycloaddition reaction was the exo-anti -(509) adduct (Scheme 2.244 and Fig. 2.35). [Pg.322]

The C-H insertion reaction is aided by amino groups. The allylic amino function of 1,2-dihydro-1 methylquinoline promotes the formation of both the 2- and the 4-dichloromethyl derivatives (Scheme 7.3). Spectroscopic monitoring of the reaction shows that the C-H insertion reaction precedes the cycloaddition reaction [16]. [Pg.315]

Fig. 16 Cycloaddition reaction of 0-allyl derivative of D-glucose derives aldehyde with aniline... Fig. 16 Cycloaddition reaction of 0-allyl derivative of D-glucose derives aldehyde with aniline...
Based on results presented in Scheme 37, Logothetis suggested that the thermal decomposition products from the olefinic azides in the scheme are derived from triazoline intermediates formed by an intramolecular cycloaddition reaction and not by fragmentation of the azido group to a nitrene.100 However, allyl azide and 4-azido-l-pentene do not undergo internal cycloaddition because of the strain in the corresponding triazoline they fail to give aziridines and imines upon thermolysis.100... [Pg.250]

Nitrile oxides react with the methyl enol ethers of (Rs)-l -fluoro-alkyl-2-(p-tolylsulfinyl)ethanones to produce (45,5/f,/fs)-4,5-dihydroisoxazoles with high regio-and diastereo-selectivity.87 In the 1,3-dipolar cycloaddition of benzonitrile oxide with adamantane-2-thiones and 2-methyleneadamantanes, the favoured approach is syn, as predicted by the Cieplak s transition-state hyperconjugation model.88 The 1,3-dipolar cycloaddition reaction of acetonitrile oxide with bicyclo[2.2.l]hepta-2,5-diene yields two 1 1 adducts and four of six possible 2 1 adducts.89 Moderate catalytic efficiency, ligand acceleration effect, and concentration effect have been observed in the magnesium ion-mediated 1,3-dipolar cycloadditions of stable mesitonitrile oxide to allylic alcohols.90 The cycloaddition reactions of acryloyl derivatives of the Rebek imide benzoxazole with nitrile oxides are very stereoselective but show reaction rates and regioselectivities comparable to simple achiral models.91. [Pg.441]

Intramolecular cycloaddition of fV-benzyl-substituted 3-O-allylhexose nitrones furnishes chiral oxepane derivatives. The regioselectivity of the cycloaddition depends on several factors such as (1) the structural nature of the nitrone, (2) substitution and stereochemistry at 3-C of the carbohydrate backbone, and (3) substitution at the terminus of the O-allyl moiety. A mixture of an oxepane and a pyran is formed in the intramolecular oxime olefin cycloaddition of a 3-O-allyl carbohydrate-derived oxime <2003T4623>. The highly stereoselective synthesis of oxepanes proceeds by intramolecular nitrone cycloaddition reactions on sugar-derived methallyl ethers <2003TA3899>. [Pg.79]

The presence of five-membered rings such as cyclopentanes, cyclopentenes, and dihydrofurans in a wide range of target molecules has led to a variety of methods for their preparation. One of the most successful of these is the use of trimethylenemethane [3 + 2] cycloaddition, catalysed by pal-ladium(O) complexes. The trimethylenemethane unit in these reactions is derived from 2-[ (trimethylsilyl)methyl]-2-propen- 1-yl acetate which is at the same time an allyl silane and an allylic acetate. This makes it a weak nucleophile and an electrophile in the presence of palladium(0). Formation of the palladium 7t-allyl complex is followed by removal of the trimethylsilyl group by nucleophilic attack of the resulting acetate ion, thus producing a zwitterionic palladium complex that can undergo cycloaddition reactions. [Pg.1334]

Cycloaddition reactions of a,/3-unsaturated chromium and tungsten complexes have been studied to a great extent and have been reviewed.3 -6 Our report on cycloaddition of (l-alkynyl)carbene complexes is restricted to a short abstract and an update including more recent results. A most remarkable feature of [4+2] cycloadditions of 1,3 dienes to C=C bonds of (l-alkynyl)carbene complexes, e.g., li, is that such reactions proceed under very mild conditions, compared to those for reactions of propargylic esters, e.g., 41. Thus, formation of a Diels-Alder adduct, e.g., a norbornadiene derivative 42, can be achieved at 25°C via carbene complexes instead of at 190°C via the direct route (Scheme 15).68 Ligand disengagement from compound 40 can be achieved in various ways, e.g., by formation of an ester 43 through oxidation of the Cr=C bond, or by formation of an allyl silane 4369 or a stannane.70 71... [Pg.182]


See other pages where Cycloaddition reactions, allylic derivatives is mentioned: [Pg.473]    [Pg.473]    [Pg.311]    [Pg.824]    [Pg.824]    [Pg.801]    [Pg.24]    [Pg.244]    [Pg.957]    [Pg.543]    [Pg.258]    [Pg.68]    [Pg.784]    [Pg.798]    [Pg.129]    [Pg.443]    [Pg.23]    [Pg.78]    [Pg.631]    [Pg.645]    [Pg.1103]    [Pg.441]    [Pg.520]    [Pg.358]    [Pg.192]    [Pg.98]    [Pg.376]    [Pg.11]    [Pg.91]    [Pg.635]    [Pg.107]   


SEARCH



5-Allyl-derivatives

Allylation cycloadditions

Allylic derivatives

Allylic derivatives reactions

Cycloaddition reactions derivative

Cycloaddition reactions, allylic derivatives 3 + 4]/ cycloadditions

Cycloaddition reactions, allylic derivatives 3 + 4]/ cycloadditions

Cycloaddition reactions, allylic derivatives mechanisms

© 2024 chempedia.info