Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reaction 2 + 2 -cycloadduct

The dimeri2ation and trimeri2ation of isocyanates are special cases of the cycloaddition reaction ia that they iavolve reageats of the same type. The uacataly2ed carbodiiaiidi2atioa of isocyanates likely iavolves a labile 2 + 2 cycloadduct (12) which Hberates carboa dioxide. [Pg.449]

A large number of pyridazines are synthetically available from [44-2] cycloaddition reactions. In one general method, azo or diazo compounds are used as dienophiles, and a second approach is based on the reaction between 1,2,4,5-tetrazines and various unsaturated compounds. The most useful azo dienophile is a dialkyl azodicarboxylate which reacts with appropriate dienes to give reduced pyridazines and cinnolines (Scheme 89). With highly substituted dienes the normal cycloaddition reaction is prevented, and, if the ethylenic group in styrenes is substituted with aryl groups, indoles are formed preferentially. The cycloadduct with 2,3-pentadienal acetal is a tetrahydropyridazine derivative which has been used for the preparation of 2,5-diamino-2,5-dideoxyribose (80LA1307). [Pg.48]

Nitronates derived from primary nitroalkanes can be regarded as a synthetic equivalent of nitrile oxides since the elimination of an alcohol molecule from nitronates adds one higher oxidation level leading to nitrile oxides. This direct / -elimination of nitronates is known to be facilitated in the presence of a Lewis acid or a base catalyst [66, 72, 73]. On the other hand, cycloaddition reactions of nitronates to alkene dipolarophiles produce N-alkoxy-substituted isoxazolidines as cycloadducts. Under acid-catalyzed conditions, these isoxazolidines can be transformed into 2-isoxazolines through a ready / -elimination, and 2-isoxazolines correspond to the cycloadducts of nitrile oxide cycloadditions to alkenes [74]. [Pg.272]

The Lewis acid-catalyzed 1,3-dipolar cycloaddition reaction of nitrones to a,/ -un-saturated carbonyl compound in the presence of Lewis acids has been investigated by Tanaka et al. [31]. Ab-initio calculations were performed in a model reaction of the simple nitrone 18 reacting with acrolein 1 to give the two cycloadducts 19 and 20 (Scheme 8.7). [Pg.322]

As formal a, /i-unsaturated sulfones and sulfoxides, respectively, both thiirene dioxides (19) and thiirene oxides (18) should be capable, in principle, of undergoing cycloaddition reactions with either electron-rich olefins or serving as electrophilic dipolarophiles in 2 + 3 cycloadditions. The ultimate products in such cycloadditions are expected to be a consequence of rearrangements of the initially formed cycloadducts, and/or loss of sulfur dioxide (or sulfur monoxide) following the cycloaddition step, depending on the particular reaction conditions. The relative ease of the cycloaddition should provide some indication concerning the extent of the aromaticity in these systems2. [Pg.426]

Since the first demonstration of a cycloaddition reaction of a, /f-unsaturated sulfones in 1938 by Alder and coworkers85, a variety of a, /3-unsaturated sulfones have been prepared and used as dienophiles. For example, when a mixture of p-tolyl vinyl sulfone and 2,3-dimethylbutadiene in benzene is heated at 145-150 °C for 10 h in a sealed tube, crystals of the cycloadduct (134) are obtained (equation 102). Other examples of this intermolecular cycloaddition reaction are given in Table 12. [Pg.791]

The intramolecular cycloaddition has proven to be the method of choice for the preparation of steroids. A diastereomeric mixture of 204, prepared from 191 and tosylate 203 has been cleanly converted to dl-estra-1,3,5(10)-trien-17-one (205) in 85% yield (equation 130). A second example of the intramolecular cycloaddition reaction is the formation of the cycloadduct (209), the key intermediate in a synthesis of the As-pidosperma alkaloid aspidospermine, upon heating 208 at 600 °C (equation 131)124. The sulfone 208 can be prepared by reaction of 3-ethyl-3,4,5,6-tetrahydropyridine (206) with the acid chloride 207. [Pg.806]

The regioselectivity observed in these reactions can be correlated with the resonance structure shown in Fig. 2. The reaction with electron-rich or electron-poor alkynes leads to intermediates which are the expected on the basis of polarity matching. In Fig. 2 is represented the reaction with an ynone leading to a metalacycle intermediate (formal [4C+2S] cycloadduct) which produces the final products after a reductive elimination and subsequent isomerisation. Also, these reactions can proceed under photochemical conditions. Thus, Campos, Rodriguez et al. reported the cycloaddition reactions of iminocarbene complexes and alkynes [57,58], alkenes [57] and heteroatom-containing double bonds to give 2Ff-pyrrole, 1-pyrroline and triazoline derivatives, respectively [59]. [Pg.74]

Stereoselective inverse-demand hetero (4 + 2) cycloadditions. A Chiral Template for C-Aryl Glycoside Synthesis. Chiral allenamides2 4 had been used in highly stereoselective inverse-demand hetero (4 + 2) cycloaddition reactions with heterodienes.5 These reactions lead to stereoselective synthesis of highly functionalized pyranyl heterocycles. Further elaboration of these cycloadducts provides a unique entry to C-aryl-glycosides and pyranyl structures that are common in other natural products (Scheme 1). [Pg.79]

Epoxidations of chiral allenamides lead to chiral nitrogen-stabilized oxyallyl catioins that undergo highly stereoselective (4 + 3) cycloaddition reactions with electron-rich dienes.6 These are the first examples of epoxidations of allenes, and the first examples of chiral nitrogen-stabilized oxyallyl cations. Further elaboration of the cycloadducts leads to interesting chiral amino alcohols that can be useful as ligands in asymmetric catalysis (Scheme 2). [Pg.79]

Thiophenes are less reactive than furans and therefore react with very reactive dienophiles. They behave somewhat differently from furans and in many cases the intermediate addition products are unstable and undergo cheleotropic extrusion of sulfur [30]. Thiophenes 30 undergo cycloaddition reactions with DMAD (Equation 2.11) to afford bicyclic cycloadducts which lead to phthal-ates by sulfur extrusion, thus offering a one-pot synthesis of dimethylphthalates [31]. [Pg.40]

Whereas tropones usually act as dienes in cycloaddition reactions (Section 5.4), tricarbonyl (tropone) iron 59 displays a reactivity that is almost identical to that of a normal enone. High pressure cycloadditions of 59 with 1-oxygen substituted dienes 60 gave the desired cycloadducts 61 in good to excellent yields (Equation 5.9). The subsequent decomplexation of the cycloadducts has been accomplished by treatment with CAN [20]. [Pg.213]

Staudinger observed that the cycloaddition of ketenes with 1,3-dienes afforded cyclobutanones from a formal [2+2] cycloaddition [52] prior to the discovery of the Diels-Alder reaction. The 2+2 cycloadditions were classified into the symmetry-allowed 2+2 cycloaddition reactions [6, 7], It was quite momentous when Machiguchi and Yamabe reported that [4+2] cycloadducts are initial products in the reactions of diphenylketene with cyclic dienes such as cyclopentadiene (Scheme 11) [53, 54], The cyclobutanones arise by a [3, 3]-sigmatropic (Claisen) rearrangement of the initial products. [Pg.36]

Dipolar cycloaddition reactions of thioisoraunchnones (l,3-thiazolium-4-olates) have not been as extensively studied as those of munchnones (l,3-oxazolium-5-olates) despite offering rapid access to novel heterocyclic compounds. The cycloaddition of the thioisomunchnone (52) with trans-P-nitrostyrene results in the formation of two diastereoisomeric 4,5-dihydrothiophenes (53) and (54) via transient cycloadducts. These cycloadducts then undergo rearrangement under the reaction conditions <96JOC3738>. [Pg.180]

Several enamines also participate in these cycloaddition reactions. For example, the addition of methyl lithium to benzaldehyde 5 and the sequential introduction of the vinylogous amide and magnesium bromide results in the cycloaddition elimination product chromene 63 (method G, Fig. 4.33).27 The introduction of methyl magnesium bromide to a solution of the benzaldehyde 5 and two equivalents of the morpholine enamine produces the cycloadduct 64 in 70% yield with better than 50 1 diastereoselectivity (method F). Less reactive enamides, such as that used by Ohwada in Fig. 4.4, however, fail to participate in these conditions. [Pg.107]

More recently, [2+3] cycloaddition reaction of the tri-te/t-butylphenylphosphaethyne (25) has been reinvestigated, when in spite of the steric encumbrance of extremely bulky Mes group, the use of trimethylsilylated diazomethane (24) makes its cycloaddition successful, which is followed by SiMe3/H migration yielding bulky [l,2,4]diazaphospholes [33], Phosphaalkyne 25 reacts with 24 in a regioselective manner to form intermediate cycloadduct 26, which undergoes facile aromatization... [Pg.181]

Diazaphospholes are known to undergo facile 1,3-dipolar cycloaddditions with a variety of dipoles [2, 4, 7, 98], During recent years, some interesting [2+3] cycloaddition reactions have been reported. 2-Acyl-[l,2,3]diazaphospholes 6 were reported to undergo [2+3] cycloaddition with diazocumulene 92, the minor equilibrium isomer of a-diazo-a-silyl ketones 91, to form a bicyclic cycloadduct 93 (Scheme 29). Thermolysis of the cycloadduct results in the formation of tricyclic phosphorus heterocycle 94, which can be explained due to the possibility of two parallel reactions of cycloadduct. On the one hand, extrusion of molecular nitrogen from 93... [Pg.196]

Recently, [2+3] cycloaddition reaction of 2-acetyl-[l,2,3]diazaphosphole (6) with 9-diazofluorenes (96) has been reported [105, 106], From the reaction in cyclohexane at rt, bicyclic phosphirane 97 was obtained as a result of the loss of nitrogen from the initial cycloadduct (Scheme 30). The cycloadduct, 3-spiro substituted 3H-[l,2,4]diazaphospholo-fused [l,2,3]diazaphosphole (98) could be isolated in good yield at room temperature in one case (R=/Bu) its stability was assigned to the presence of bulky fert-butyl group at 7-position. Use of polar solvent like dichloromethane led to the cyclic trimeric compound 99 (Scheme 30). [Pg.197]

Despite the lack of success in the attempts at intramolecular cycloaddition with substrates 83 and 91, a moderately promising outcome was observed for the nitroalkene substrate (98, Scheme 1.10c). Heating a dilute solution of oxido-pyridinium betaine 98 in toluene to 120 °C produced a 20 % conversion to a 4 1 mixture of two cycloadducts (110 and 112), in which the major cycloadduct was identified as 110. While initially very encouraging, it became apparent that the dipolar cycloaddition reaction proceeded to no greater than 20 % conversion, an outcome independent of choice of reaction solvent. Further investigation, however, revealed that the reaction had reached thermodynamic equilibrium at 20 % conversion, a fact verified by resubmission of the purified major cycloadduct 110 to the reaction conditions to reestablish the same equilibrium mixture at 20 % conversion. [Pg.14]


See other pages where Cycloaddition reaction 2 + 2 -cycloadduct is mentioned: [Pg.884]    [Pg.869]    [Pg.271]    [Pg.78]    [Pg.145]    [Pg.274]    [Pg.284]    [Pg.287]    [Pg.62]    [Pg.73]    [Pg.80]    [Pg.86]    [Pg.93]    [Pg.35]    [Pg.46]    [Pg.56]    [Pg.81]    [Pg.205]    [Pg.206]    [Pg.234]    [Pg.54]    [Pg.250]    [Pg.150]    [Pg.119]    [Pg.383]    [Pg.795]    [Pg.807]    [Pg.11]    [Pg.18]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.1043 , Pg.1050 ]




SEARCH



1,3-dipolar cycloaddition reactions cycloadduct

Cycloaddition reaction 2+2]-cycloadducts

Cycloaddition reaction 2+2]-cycloadducts

Cycloadducts

© 2024 chempedia.info