Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition of nitriles

In theory, three isoxazolines are capable of existence 2-isoxazoline (2), 3-isoxazoline and 4-isoxazoline. The position of the double bond may also be designated by the use of the prefix A with an appropriate numerical superscript. Of these only the 2-isoxazolines have been investigated in any detail. The preparation of the first isoxazoline, 3,5-diphenyl-2-isoxazoline, from the reaction of )3-chloro-)3-phenylpropiophenone with hydroxylamine was reported in 1895 (1895CB957). Two major syntheses of 2-isoxazolines are the cycloaddition of nitrile A-oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamine. Since 2-isoxazolines are readily oxidized to isoxazoles and possess some of the unique properties of isoxazoles, they also serve as key intermediates for the synthesis of other heterocycles and natural products. [Pg.3]

A -Isoxazolines are readily available from the 1,3-dipolar cycloaddition of nitrile -oxides with alkenes and from the condensation reaction of ehones with hydroxylamine. Therefore, methods of conversion of -isoxazolines into isoxazoles are of particular interest and of synthetic importance. [Pg.78]

Alkylarylisoxazoles can be obtained from the cycloaddition of nitrile Af-oxides to substituted alkynes or alkenes (Section 4.16.4.1.2(ii)), and from the condensation of the 1,4-dilithio oximes (358) with benzonitriles (72JHC183) or amides (78JOC3015). [Pg.84]

The two major methods of preparation are the cycloaddition of nitrile oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamines. Additional methods include reaction of /3-haloketones and hydroxylamine, the reaction of ylides with nitrile oxides by activation of alkyl nitro compounds from isoxazoline AT-oxides (methoxides, etc.) and miscellaneous syntheses (62HC(i7)i). [Pg.88]

A variety of 1-azirines are available (40-90%) from the thermally induced extrusion (>100 °C) of triphenylphosphine oxide from oxazaphospholines (388) (or their acyclic betaine equivalents), which are accessible through 1,3-dipolar cycloaddition of nitrile oxides (389) to alkylidenephosphoranes (390) (66AG(E)1039). Frequently, the isomeric ketenimines (391) are isolated as by-products. The presence of electron withdrawing functionality in either or both of the addition components can influence the course of the reaction. For example, addition of benzonitrile oxide to the phosphorane ester (390 = C02Et) at... [Pg.89]

A series of 3-imino-2-aryl-l-azetines has been prepared by cycloaddition of nitrile ylides to isocyanides. Thus generation of the nitrile ylides (215) in the presence of cyclohexyl isocyanide gives the 3-cycIohexyIimino-2-aryI-l-azetines (205). Similar 1-azetines are formed by interception of nitrile ylides with a-methylbenzyl isocyanide (72AG(E)47) cf. Section 5.09.4.2.2). [Pg.276]

Zinc-tartrate complexes were applied for reactions of both nitrones and nitrile oxides with allyl alcohol and for both reaction types selectivities of more than 90% ee were obtained. Whereas the reactions of nitrones required a stoichiometric amount of the catalyst the nitrile oxide reactions could be performed in the presence of 20 mol% of the catalyst. This is the only example on a metal-catalyzed asymmetric 1,3-dipolar cycloaddition of nitrile oxides. It should however be no-... [Pg.244]

The cycloaddition of nitrile oxides 574 to vinyl sulphoxides usually produces a mixture of regio- and diastereoisomers. Their ratio is dependent on the nitrile oxide used and the configuration around the double bond in the starting sulphoxide (equation 365)673. [Pg.360]

The stereoselectivity of conjugate addition and cyclopropanation of the chiral nitrovinyldioxolanes 17 can be effectively controlled <96TL6307>, and good selectivity is observed in the ultrasound-promoted cycloaddition of nitrile oxides to alkenyldioxolanes 18 <95MI877,95JOC7701 >. Asymmetric Simmons-Smith cyclopropanation of 19 proceeds with... [Pg.193]

Nitro sulfides are useful intermediates for the preparation of various heterocycles containing sulfur atoms. Synthetic applications are demonstrated in Schemes 4.25 and 4.3,6 in which biotin is prepared via cycloaddition of nitrile oxides (see Chapter 8). [Pg.72]

As discussed in Section 6.2, nitro compounds are good precursors of nitrile oxides, which are important dipoles in cycloadditions. The 1,3-dipolar cycloaddition of nitrile oxides with alkenes or alkynes provides a straightforward access to 2-isoxazolines or isoxazoles, respectively. A number of ring-cleaving procedures are applicable, such that various types of compounds may be obtained from the primary adducts (Scheme 8.18). There are many reports on synthetic applications of this reaction. The methods for generation of nitrile oxides and their reactions are discussed in Section 6.2. Recent synthetic applications and asymmetric synthesis using 1,3-dipolar cycloaddition of nitrile oxides are summarized in this section. [Pg.258]

Intramolecular 1,3-cycloadditions of nitrile oxides (INOC) provide a useful tool for the construction of fused cyclic ring systems. The stereochemical outcome of this reaction is presumed to be a consequence of reaction through the transition state that minimizes allylic 1,3 strain (Scheme 8.19).103... [Pg.261]

Cycloaddition of nitrile oxides to alkenes with various chiral auxiliaries are summarized in Table 8.1, which shows chiral alkenes and differential excess (de). [Pg.266]

Compared with the related reactions of nitrones, there have only appeared a few publications of metal-assisted or metal-catalyzed 1,3-dipolar cycloadditions of nitrile oxides. This is due to... [Pg.266]

It has recently been found that Et2Zn promotes the 1,3-dipolar cycloaddition of nitrile oxides to allyl alcohol in the presence of catalytic amounts of diisopropyl tartrate (DIPT). By this method, 2-isoxazlines are obtained in good yields and up to 96% ee (Eq. 8.73).124a A positive nonlinear effect (amplification of ee of the product) has been observed in this reaction. There is an excellent review on positive and negative nonlinear effects in asymmetric induction.124b... [Pg.267]

Recently, Denmark and coworkers have developed a new strategy for the construction of complex molecules using tandem [4+2]/[3+2]cycloaddition of nitroalkenes.149 In the review by Denmark, the definition of tandem reaction is described and tandem cascade cycloadditions, tandem consecutive cycloadditions, and tandem sequential cycloadditions are also defined. The use of nitroalkenes as heterodienes leads to the development of a general, high-yielding, and stereoselective method for the synthesis of cyclic nitronates (see Section 5.2). These dipoles undergo 1,3-dipolar cycloadditions. However, synthetic applications of this process are rare in contrast to the functionally equivalent cycloadditions of nitrile oxides. This is due to the lack of general methods for the preparation of nitronates and their instability. Thus, as illustrated in Scheme 8.29, the potential for a tandem process is formulated in the combination of [4+2] cycloaddition of a donor dienophile with [3+2]cycload-... [Pg.274]

The process has been applied to the synthesis of a A9-19-nor-10-azatesto-sterone 378 by cycloaddition of nitrile oxide 377 to MCP followed by thermal rearrangement of the adduct (Scheme 52) [94]. [Pg.61]

Polymeric isoxazolines were prepared by cycloaddition of nitrile oxides to norbomadiene followed by ring-opening metathesis polymerization (ROMP) <06PLM3292 06MM3147>. [Pg.292]

One obvious synthetic route to isoxazoles and dihydroisoxazoles is by [3+2] cycloadditions of nitrile oxides with alkynes and alkenes, respectively. In the example elaborated by Giacomelli and coworkers shown in Scheme 6.206, nitroalkanes were converted in situ to nitrile oxides with 1.25 equivalents of the reagent 4-(4,6-di-methoxy[l,3,5]triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 10 mol% of N,N-dimethylaminopyridine (DMAP) as catalyst [373], In the presence of an alkene or alkyne dipolarophile (5.0 equivalents), the generated nitrile oxide 1,3-dipoles undergo cycloaddition with the double or triple bond, respectively, thereby furnishing 4,5-dihydroisoxazoles or isoxazoles. For these reactions, open-vessel microwave conditions were chosen and full conversion with very high isolated yields of products was achieved within 3 min at 80 °C. The reactions could also be carried out utilizing a resin-bound alkyne [373]. For a related example, see [477]. [Pg.238]

In a quite different approach, shown in Scheme 204, cycloaddition of nitrile 1232 to trimethylsilyldiazomethane provides silylated triazole 1233, isolated in 75% yield. Treatment with tetrabutylammonium fluoride removes the trimethylsilyl group and simultaneously the silyl protection of the carboxylic group to afford 4-substituted triazole derivative 1234 in 81% yield <2003PEN699>. [Pg.138]

From the 1,3-dipolar cycloaddition of nitrile oxides to azomethines (imines) 291... [Pg.244]

The cycloaddition of nitrile oxides to nitriles in the presence of a Pd(ll) center allowed the isolation of the previously unknown l,2,4-oxadiazole-Pd(n) species 227 (Equation 44) <2005EJI845>. [Pg.279]

The cycloaddition of nitrile oxides to amidoximes 234 leads to 1,2,4-oxadiazole 4-oxides which can then be deoxygenated with trimethyl phosphite (Equation 48) <1997T1787>. [Pg.281]

The cycloaddition of nitrile oxide 235 to the 4-iminobenzopyran-2-one 236 gave the fully conjugated 1,2,4-oxadiazole 238 directly, a reaction that most likely proceeds via loss of methanol from the intermediate 237 (Scheme 36) <1996JHC967>. Similarly, nitrile oxide 239 reacted with imine 240 to give the 1,2,4-oxadiazole 242 via the nonisolable intermediate 241 <2002PJC1137>. [Pg.281]

In the scope of this subsection, competitive 1,3-cycloaddition of nitrile oxides to carbon-carbon and carbon-heteroatom multiple bonds are of special interest. Competition between carbon-carbon and carbon-nitrogen double bonds in... [Pg.20]


See other pages where Cycloaddition of nitriles is mentioned: [Pg.67]    [Pg.85]    [Pg.88]    [Pg.88]    [Pg.89]    [Pg.89]    [Pg.145]    [Pg.437]    [Pg.437]    [Pg.264]    [Pg.264]    [Pg.59]    [Pg.60]    [Pg.61]    [Pg.62]    [Pg.63]    [Pg.45]    [Pg.279]    [Pg.279]    [Pg.6]    [Pg.20]   
See also in sourсe #XX -- [ Pg.467 ]




SEARCH



1,3-dipolar cycloaddition of nitrile oxide

1.3- Dipolar cycloaddition of nitrile imines

By cycloaddition of nitrile oxides

Cycloaddition of Alkynes and Nitriles

Cycloaddition of nitrile oxides with alkenes

Cycloaddition reactions of nitrile oxides with alkenes

Cycloadditions of azide and nitrile

Cycloadditions of nitrile oxides

Dipolar cycloadditions of nitrile oxides

Hydrogenation of nitrile oxide cycloaddition product

Nitriles cycloaddition

Nitriles cycloadditions

© 2024 chempedia.info