Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions cyclizations

Stork-Eschenmoser Hypothesis- Olefin Geometry is preserved in the cyclization reaction, i.e. trans olefin leads to a trans fused ring jucntion A. Eschenmoser HCA 1955, 38, 1890 G. Stork JAGS 1955, 77, 5068... [Pg.164]

Carbanions stabilized by phosphorus and acyl substituents have also been frequently used in sophisticated cyclization reactions under mild reaction conditions. Perhaps the most spectacular case is the formation of an ylide from the >S-lactam given below using polymeric Hflnig base (diisopropylaminomethylated polystyrene) for removal of protons. The phosphorus ylide in hot toluene then underwent an intramolecular Wlttig reaction with an acetyl-thio group to yield the extremely acid-sensitive penicillin analogue (a penem I. Ernest, 1979). [Pg.32]

First the protected oligopeptide is coupled with polymer-bound nitrophenol by DCC. N"-Deblocking leads then to simultaneous cycliiation and detachment of the product from the polymer (M. Fridkin, 1965). Recent work indicates that high dilution in liquid-phase cycli-zation is only necessary, if the cyclization reaction is sterically hindered. Working at low temperatures and moderate dilution with moderately activated acid derivatives is the method of choice for the formation of macrocyclic lactams (R.F. Nutt, 1980). [Pg.241]

The cyclization reactions discussed here either involve the intramolecular reaction of a donor group D with an acceptor group A or a cyclizing dimerization of two molecules with two terminal acceptors and two donors. A polymerization reaction will always compete with cyclization. For macrolides see p. 146 and p. 319 — 329. [Pg.246]

Dimethyl acetylenedicarboxylate (DMAD) (125) is a very special alkyne and undergoes interesting cyclotrimerization and co-cyclization reactions of its own using the poorly soluble polymeric palladacyclopentadiene complex (TCPC) 75 and its diazadiene stabilized complex 123 as precursors of Pd(0) catalysts, Cyclotrimerization of DMAD is catalyzed by 123[60], In addition to the hexa-substituted benzene 126, the cyclooctatetraene derivative 127 was obtained by the co-cyclization of trimethylsilylpropargyl alcohol with an excess of DMAD (125)[6l], Co-cyclization is possible with various alkenes. The naphthalene-tetracarboxylate 129 was obtained by the reaction of methoxyallene (128) with an excess of DMAD using the catalyst 123[62],... [Pg.487]

Probably first obtained by Hantzsch and Arapides (105) by condensation of a,/3-dichlorether with barium thiocyanate, and identified by its pyridine-like odor, thiazole was first prepared in 1889 by G. Popp (104) with a yield of 10% by the reduction in boiling ethanol of thiazol-2-yldiazonium sulfate resulting from the diazotization of 2-aminothiazole. prepared the year before by Traumann (103). The unique cyclization reaction affording directly the thiazole molecule was described in 1914 by Gabriel and Bachstez (106). They applied the method of cyclization, developed by Gabriel (107, 108), to the diethylacetal of 2-formylamino-ethanal and obtained thiazole with a yield of 62% - Thiazole was also formed in the course of a study on the ease of decarboxylation of the three possible monocarboxylic acids derived from it (109). On the other... [Pg.24]

Several 4-amino-2,5-disubstituted thiazoles (257) have been obtained recently (702, 756, 776, 814, 820) by a ring cyclization reaction of halogeno compounds with cyanamide derivatives (263) according to the general Scheme 135. [Pg.302]

The most general pathways to thiazoles bearing such groups as alkyl, aryl, aralkyl, and alkenyl, substituted or not by functional groups, are the cyclization reactions described in Chapter II. A certain number of indirect methods also exist, though only a few examples of each are given here. Others are discussed in the following chapters, with the more important references cited here. [Pg.339]

This first-stage polymer is then introduced into the application environment, where the final cyclization reaction occurs. [Pg.336]

Reactions. In addition to the usual reactions of primary hydroxyl groups and of double bonds, i j -butenediol undergoes a number of cyclization reactions. [Pg.106]

R = H) undergoes a variety of enzyme-catalyzed free-radical intramolecular cyclization reactions, followed by late-stage oxidations, eliminations, rearrangements, and O- and N-alkylations. Working from this generalization as an organizing principle, the majority of known AmaryUidaceae alkaloids can be divided into eight stmctural classes (47). [Pg.542]

Other types of cyclization reactions have been demonstrated (95). [Pg.398]

The aminophenols are chemically reactive, undergoing reactions involving both the aromatic amino group and the phenoHc hydroxyl moiety, as weU as substitution on the benzene ring. Oxidation leads to the formation of highly colored polymeric quinoid stmctures. 2-Aminophenol undergoes a variety of cyclization reactions. [Pg.310]

Subsequent dehydrohalogenation afforded exclusively the desired (Z)-olefin of the PGI2 methyl ester. Conversion to the sodium salt was achieved by treatment with sodium hydroxide. The sodium salt is crystalline and, when protected from atmospheric moisture and carbon dioxide, is indefinitely stable. A variation of this synthesis started with a C-5 acetylenic PGF derivative and used a mercury salt cataly2ed cyclization reaction (219). Although natural PGI has not been identified, the syntheses of both (6R)- and (65)-PGl2, [62777-90-6] and [62770-60-7], respectively, have been described, as has that of PGI3 (104,216). [Pg.164]

Tb allium (ITT) ttifluoroacetate promotes olefin cyclization reactions and intramolecular coupling reactions (32,33). [Pg.470]

Thiophene [110-02-1] and a number of its derivatives are significant in fine chemical industries as intermediates to many products for pharmaceutical, agrochemical, dyestuffs, and electronic appHcations. This article concentrates on the industrial, commercial, and economic aspects of the production and apphcations of thiophene and thiophene derivatives and details the main synthetic schemes to the parent ring system and simple alkyl and aryl derivatives. Functionalization of the ring and the synthesis of some functional derivatives that result, not from the parent ring system, but by direct ring cyclization reactions are also considered. Many good reviews on the chemistry of thiophene and thiophene derivatives are available (1 7). [Pg.17]

Electrophilic substitution of thiophene occurs largely at the 2-position and the reactivity of the ring is greater than that of benzene. 3-Substituted derivatives are generally prepared by indirect means or through ring cyclization reactions. [Pg.19]

Other photoiaduced cyclization reactions can occur by conrotatory bond formation to give the 9 P,10 P-antiisomers, isopyrocalciferol2 [474-70-4] (23) or isopyrocalciferol [10346-44-8] (24) (Fig. 5), whereas thermal cychzation at >100°C leads to the two 9,10-syn isomers, (9a,10 a)-pyrocalciferol (27)... [Pg.130]

Reactions of acetylene and iron carbonyls can yield benzene derivatives, quinones, cyclopentadienes, and a variety of heterocycHc compounds. The cyclization reaction is useful for preparing substituted benzenes. The reaction of / fZ-butylacetylene in the presence of Co2(CO)g as the catalyst yields l,2,4-tri-/ f2 butylbenzene (142). The reaction of Fe(CO) and diphenylacetylene yields no less than seven different species. A cyclobutadiene derivative [31811 -56-0] is the most important (143—145). [Pg.70]

Ammonium acetate and sodium methoxide are effective catalysts for the ammonolysis of soybean oil (49). Polyfunctional amines and amino alcohols such as ethylenediamine, ethanolamine, and diethanolamine react to give useful intermediates. Ethylenediamine can form either a monoamide or a diamide depending on the mole ratio of reactants. With an equimolar ratio of reactants and a temperature of >250° C, a cyclization reaction occurs to give imidazolines with ethylenediamine (48) ... [Pg.85]

The most important synthesis of pyrazolones involves the condensation of a hydrazine with a P-ketoester such as ethyl acetoacetate. Commercially important pyrazolones carry an aryl substituent at the 1-position, mainly because the hydrazine precursors are prepared from readily available and comparatively inexpensive diazonium salts by reduction. In the first step of the synthesis the hydrazine is condensed with the P-ketoester to give a hydrazone heating with sodium carbonate then effects cyclization to the pyrazolone. In practice the condensation and cyclization reactions are usually done in one pot without isolating the hydrazone intermediate. [Pg.296]

Unsaturated hydrazones, unsaturated diazonium salts or hydrazones of 2,3,5-triketones can be used as suitable precursors for the formation of pyridazines in this type of cyclization reaction. As shown in Scheme 61, pyridazines are obtainable in a single step by thermal cyclization of the tricyanohydrazone (139), prepared from cyanoacetone phenylhydrazone and tetracyanoethylene (76CB1787). Similarly, in an attempted Fischer indole synthesis the hydrazone of the cyano compound (140) was transformed into a pyridazine (Scheme 61)... [Pg.41]

Cyclization reactions effected by intramolecular attack of the heteroatom on a nitrile group provide a useful source of 2-amino heterocycles. Some illustrative examples are depicted in Scheme 16. [Pg.99]

A 1 1 adduct from diphenylsulfilimine and a benzoylacetylene underwent an intramolecular cyclization reaction to give an isoxazole in good yield (equation 40). Similarly, the 1 1 adduct from iodoazide and chalcone gave 3,5-diphenylisoxazole (equation 41). These two approaches to regiospecific isoxazole synthesis are of little practical significance. Additional examples of the (OCCCN) reaction are given in equations (42) and (43). [Pg.75]

Appropriately substituted selenides can undergo cyclization reactions via a group transfer process. [Pg.717]

Intramolecular addition reactions are quite common when radicals are generated in molecules with unsaturation in a sterically favorable position. Cyclization reactions based on intramolecular addition of radical intermediates have become synthetically useful, and several specific cases will be considered in Section 10.3.4 of Part B. [Pg.719]

Divergence of Enzymatic and Biomimetic Chemical Cyclization Reactions.297... [Pg.249]

The cyclization reaction could also be carried out before the reduction of the nitro group. The resulting nitro alcohols were then converted toPGEi and l5-epi- and 11,15-epi-PGEi s. [Pg.253]


See other pages where Reactions cyclizations is mentioned: [Pg.24]    [Pg.28]    [Pg.151]    [Pg.316]    [Pg.150]    [Pg.566]    [Pg.893]    [Pg.1095]    [Pg.373]    [Pg.239]    [Pg.445]    [Pg.342]    [Pg.440]    [Pg.442]    [Pg.32]    [Pg.98]    [Pg.281]    [Pg.282]    [Pg.138]    [Pg.64]    [Pg.690]    [Pg.297]   
See also in sourсe #XX -- [ Pg.775 ]




SEARCH



Cyclization reactions

© 2024 chempedia.info