Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclization cation radical

The distyrylbenzene derivative (141) is photochemically reactive on irradiation in solution. The solvent of choice is acetonitrile/benzene/water (7 2 1) saturated with ammonia. The reactions encountered with this system are derived from electron transfer initiated by p-dicyanobenzene as the electron accepting sensitizer. This process yields the radical cation (142) of the starting material and also the cyclized radical cation (143). These species are trapped by ammonia to yield the final products (144) and (145) in the yields shown. The naphthyl system [141, R-R = (CH=CH)2] is also reactive and affords the analogous products (146) and (147). A study has examined the photochemically-induced cyclization of tetraenes such as (148) under SET conditions in aqueous acetonitrile solution. A variety of electron accepting sensitizers was used. In the example cited the sensitizer (149) was effective and the cascade cyclization yielded the product (150). [Pg.135]

Unsaturated ketones react with phenyUiydrazines to form hydrazones, which under acidic conditions cyclize to pyrazolines (35). Oxidation, instead of acid treatment, of the hydrazone with thianthrene radical cation (TH " ) perchlorate yields pyrazoles this oxidative cyclization does not proceed via the pyrazoline (eq. 4). [Pg.313]

The electrolysis of adamantylideneadamantane solutions affords the radical cation, which can add molecular (triplet) oxygen to give the peroxide radical anion, which can react with adamantylideneadamantane to give the 1,4-diradical and another molecule of adamantylideneadamantane radical cation. The latter reacts with oxygen, to continue the chain of the reaction, while the former cyclizes to the corresponding 1,2-dioxetane (Scheme 18) (81JA2098). [Pg.40]

PET reactions [2] can be considered as versatile methods for generating radical cations from electron-rich olefins and aromatic compounds [3], which then can undergo an intramolecular cationic cyclization. Niwa and coworkers [4] reported on a photochemical reaction of l,l-diphenyl-l, -alkadienes in the presence of phenanthrene (Phen) and 1,4-dicyanobenzene (DCNB) as sensitizer and electron acceptor to construct 5/6/6- and 6/6/6-fused ring systems with high stereoselectivity. [Pg.337]

It can be assumed that in the domino process of, for example 5-3, a reactive radical cation intermediate 5-5 is initially formed [5]. The intramolecular cyclization then proceeds almost exclusively through a stable, chair-like, six-membered transition state 5-8 to give a distonic radical cation 5-9, which is trapped by the aromatic... [Pg.337]

Other radical cyclization approaches to the synthesis of piperidines include a CAN-mediated stereoselective cyclization of epoxypropyl cinnamyl amines <06TL705> and a cyclization of (-trimethylsilylmethylamine radical cation, generated via a photoinduced electron transfer reaction to a tethered -functionality <06JOC8481>. [Pg.335]

Anodic oxidation reactions have been utilized to reverse the polarity of enol ethers and to initiate radical cation cyclizations. As shown below, the ketene acetal 97 is oxidized on a... [Pg.151]

In the oxygen-independent Type III reactions the excited/sensi-tized psoralen donates its excitation energy directly to, or reacts with, the target compound. This occurs if the substrate and the target compound (e.g., DNA) are already in close proximity or intercalated. The reactions will proceed very rapidly via the excited singlet state, and are, typically, cyclization reactions or electron-transfer between the sensitizer and the target. In addition, the psoralen can be ionized, either directly or via the excited state, and react with the target compound in the form of a radical cation. Furocoumarins are also employed in treatment of cutaneous T-cell lymphoma and some infections connected with AIDS, by so-called photopheresis processes [71, 74-76]. In this case, peripheral blood is exposed to, e.g., photoactivated (sensitized) 8-methoxypsoralen (8-MOP) in an extracorporeal flow system. This... [Pg.142]

Fig. 18 Crossings of in-plane and out-of-plane frontier MOs in radical-anionic Bergman and C1C5 cyclizations (crossings for photochemical, dianionic and radical-cationic cyclizations involve the same MOs but differ in the number of electrons). Fig. 18 Crossings of in-plane and out-of-plane frontier MOs in radical-anionic Bergman and C1C5 cyclizations (crossings for photochemical, dianionic and radical-cationic cyclizations involve the same MOs but differ in the number of electrons).
Phosphorylated derivatives of /3-nitroalcohols, upon exposure to Bu3SnH and AIBN, afford /3-(phosphatoxy)alkyl radicals. These radicals undergo heterolytic cleavage of the phosphate group to afford an alkene radical cation which is trapped intramolecularly in a tandem polar/radical crossover sequence. Derivative 37 (Scheme 13), through a 6-exol 5-exo overall cyclization, afforded the indolizidine derivative 38 as an equimolecular mixture of two diastereoisomers <2003JA7942, 2002OL2573>. [Pg.374]

Diels-Alder catalysis.1 This radical cation can increase the endo-selectivity of Diels-Alder reactions when the dienophile is a styrene or electron-rich alkene. This endo-selectivity obtains even in intramolecular Diels-Alder reactions. Thus the triene 2, a mixture of (Z)- and (E)-isomers, cyclizes in the presence of 1 to 0° to the hydroindanes 3 and 4 in the ratio 97 3. Similar cyclization of (E)-2 results in 3 and 4 in the ratio 98 2 therefore, the catalyst can effect isomerization of (Z)-2 to (E)-2. Even higher stereoselectivity is observed when the styrene group of 2 is replaced by a vinyl sulfide group (SC6H5 in place of QHtOCT ). [Pg.338]

Radiative cooling, 23 13-14 Radiative heating/cooling, 23 25-26 Radical catalysts, 14 274 Radical cations, 12 249 Radical chain reactions, 14 274 Radical cyclization approach, 21 147 Radical decomposition reaction, 10 600 Radical generating systems, alternative, 14 299... [Pg.784]

Relatively few kinetic data are available for the carbon-carbon bond forming reactions of alkene radical cations. Nevertheless, rate constants for the cyclization illustrated in Scheme 9, with generation of the alkene radical cation by the fragmentation method, have been measured. These cyclization rate constants are significantly faster than those of the corresponding neutral radicals [89]. [Pg.23]

Scheme 9 Cyclization and deprotonation of an alkene radical cation... Scheme 9 Cyclization and deprotonation of an alkene radical cation...
In a rare study of a radical cyclization of fragmentation-derived alkene radical cations, it was discovered that the stereochemistry of the precursor can have significant consequences on the outcome of the reaction. Thus, a gluco-... [Pg.30]

In the gluco case (Scheme 13) the radical cyclization, with its requirement for the formation of a czs-fused ring junction [129,130], takes place uneventfully on the opposite face of the alkene radical cation to the one shielded by the phosphate anion, whereas in the manno series cyclization is severely retarded by the presence of the phosphate group above the face of the radical cation on which cyclization must occur. This steric retardation of the cyclization step results in a breakdown of chain propagation and results in the longer reaction times observed. Furthermore, the retardation of the radical cyclization step in the manno case enables the alkene radical cation to take... [Pg.31]

In a rare example of the use of phenylselenides as radical precursors in the generation of alkene radical cations by the fragmentation approach, Giese and coworkers generated a thymidine C3/,C4/ radical cation by expulsion of diethyl phosphate. Trapping experiments were conducted with methanol and with allyl alcohol (Scheme 16), when nucleophilic attack was followed by radical cyclization [66]. [Pg.32]

A y-lactone was formed in excellent yield by the nucleophilic cyclization of a carboxylic acid onto an alkene radical cation generated from a (i-nilrophosphale under tin hydride conditions (Scheme 21) [139]. Related experiments employing the acetate group and an internal carboxylate nucleophile failed, emphasizing the very rapid collapse of the alkene radical cation/acetate ion pair [127]. [Pg.36]

An example of a 6-endo cyclization of an alcohol onto an alkene radical cation/phosphate anion pair has also been described (Scheme 22). In order to bring about fragmentation of the primary alkyl phosphate bond in this reaction it was necessary to work in a 1 1 mixture of benzene and acetonitrile [139,140],... [Pg.36]

The advantage of the nitro group as radical precursor is best seen in the context of intramolecular nucleophilic trapping of alkene radical cations by nitrogen nucleophiles, when no cyclization was observed prior to treatment... [Pg.36]

Both pyrrolizidines and indolizidines may be similarly formed by cyclization at the less-substituted, internal position of trialkyl-substituted al-kene radical cations (Scheme 29) [139,143]. Related processes featuring exo-digonal radical cyclizations have also been described (Scheme 30) [139,141 — 143]. [Pg.38]

An alternative substrate design, in which the alkene radical cation is substituted only at the internal position, forces the nucleophilic cyclization into the endocyclic mode, leading overall to bicyclic systems with a bridgehead nitrogen (Scheme 31) [139,140]. [Pg.38]

Scheme 31 Nucleophilic cyclization of an alkene radical cation in the endocyclic mode... Scheme 31 Nucleophilic cyclization of an alkene radical cation in the endocyclic mode...
Attempts at 4-exo nucleophilic cyclization failed, presumably because of a heterolytic fragmentation of the intermediate radical cation (Scheme 32) [139], not unlike that proposed (Scheme 15) for the decomposition of a mannose-derived alkene radical cation. [Pg.40]

In an extensive investigation of the stereochemical memory effect, a series of six diastereomeric pairs of substrates was prepared to probe the effect of single, then multiple substituents on the 5-exo cyclization of amines onto alkene radical cations [144,145]. Overall, these cyclizations were highly dia-stereoselective and were accounted for by a transition-state model employing a chairlike transition state with attack of the nucleophilic amine on the opposite face of the alkene radical to the one shielded by the phosphate anion in the initial contact ion pair (Scheme 34), as exemplified in Schemes 35 and 36. [Pg.41]


See other pages where Cyclization cation radical is mentioned: [Pg.434]    [Pg.90]    [Pg.274]    [Pg.282]    [Pg.133]    [Pg.5097]    [Pg.434]    [Pg.90]    [Pg.274]    [Pg.282]    [Pg.133]    [Pg.5097]    [Pg.174]    [Pg.338]    [Pg.249]    [Pg.337]    [Pg.349]    [Pg.253]    [Pg.31]    [Pg.9]    [Pg.14]    [Pg.24]    [Pg.33]    [Pg.36]    [Pg.37]    [Pg.37]    [Pg.41]    [Pg.41]   


SEARCH



Cation cyclizations

Cyclization cationic

Radical cyclization

© 2024 chempedia.info