Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclization carbon nucleophiles

The intramolecular allylation of soft carbon nucleophiles with allylic acetates as a good cyclization method has been extensively applied to syntheses of various three, four, five and six-membered rings, and medium and macrocyclic compounds[44]. Only a few typical examples of the cyclizations are treated among numerous applications. [Pg.299]

Alkynyl)oxiranes also react with carbon nucleophiles to afford furan derivatives. Furanes of different types are obtained depending on the structure of the substrates. 7-Methyl-2-ethynyloxirane (95) reacts with acetoacetate to give the furan 97 by the elimination of formaldehyde from the cyclized product 96. The hydroxy ester of the alkylidenefuran 98 and the corresponding lactone 99 are obtained by the reaction of i-methyl-2-(2-propynyI)oxirane[40, 42]. [Pg.467]

Anomalous Fischer cyclizations are observed with certain c-substituted aryl-hydrazones, especially 2-alkoxy derivatives[l]. The products which are formed can generally be accounted for by an intermediate which w ould be formed by (ip50-substitution during the sigmatropic rearrangement step. Nucleophiles from the reaction medium, e.g. Cl or the solvent, are introduced at the 5-and/or 6-position of the indole ring. Even carbon nucleophiles, e.g. ethyl acetoacelate, can be incorporated if added to the reaction solution[2]. The use of 2-tosyloxy or 2-trifluoromethanesulfonyloxy derivatives has been found to avoid this complication and has proved useful in the preparation of 7-oxygen-ated indoles[3]. [Pg.64]

Azirines (three-membered cyclic imines) are related to aziridines by a single redox step, and these reagents can therefore function as precursors to aziridines by way of addition reactions. The addition of carbon nucleophiles has been known for some time [52], but has recently undergone a renaissance, attracting the interest of several research groups. The cyclization of 2-(0-tosyl)oximino carbonyl compounds - the Neber reaction [53] - is the oldest known azirine synthesis, and asymmetric variants have been reported. Zwanenburg et ah, for example, prepared nonracemic chiral azirines from oximes of 3-ketoesters, using cinchona alkaloids as catalysts (Scheme 4.37) [54]. [Pg.134]

Additions of carbon nucleophiles to vinylepoxides are well documented and can be accomplished by several different techniques. Palladium-catalyzed allylic alkylation of these substrates with soft carbon nucleophiles (pKa 10-20) proceeds under neutral conditions and with excellent regioselectivities [103, 104]. The sul-fone 51, for example, was cyclized through the use of catalytic amounts of Pd(PPh3)4 and bis(diphenylphosphino)ethane (dppe) under high-dilution conditions to give macrocycle 52, an intermediate in a total synthesis of the antitumor agent roseophilin, in excellent yield (Scheme 9.26) [115, 116]. [Pg.335]

So far, only reactions in which the internal nucleophile is tethered to the nitrogen atom of the A -acyliminium ion have been discussed, however, cyclizations with nucleophiles attached to other positions are also possible. If the nucleophile is connected to the carbon atom adjacent to the carbonyl group, bridged azabicycloalkane derivatives are obtained in high yield by using the more reactive allyl- or propargylsilanes. [Pg.849]

Chloro-3-methylthio-l,2,4-thiadiazol-2-ium salts 51 have undergone nucleophilic displacement with a variety of nitrogen and carbon nucleophiles to give bicyclic compounds such as 52. The substitution reaction and cyclization... [Pg.499]

The two reaction modes of the Michael adducts 145 demonstrate two general principles for the possible preparation of ordinary size heterocyclic compounds from the chlorocyclopropylideneacetates 1,2. Thus, either the heterocycles 153 can be formed by Michael addition of a bidentate nucleophile 150 onto the chloro ester 1-Me and subsequent ring closure of the intermediate 151 [26] by nucleophilic substitution of the chlorine atom at the newly formed sp carbon center adjacent to both the carbonyl and the cyclopropyl group (Route B in Scheme 48). Alternatively, the intermediate 151 can cyclize by nucleophilic attack on the ester moiety to give heterocycles of type 152 (Route A in Scheme 48) [26]. [Pg.192]

While in most reported cases the nucleophiles were amines, there were few examples involving heterocyclic nitrogens [40], alcoholic oxygens [27] or carbon nucleophiles [42, 43] too. Figure 4 shows a recent example of tandem Ugi-Dieckmann protocol [42]. Ugi convertible isocyanide 2, which requires a basic activation, was used, allowing a domino activation-cyclization of the intermediate 20 to give pyrrolidinediones (tetramic acids) 22. [Pg.7]

Numerous examples of the preparation of tetramic acids from N-acylated amino acid esters by a Dieckmann-type cyclocondensation have been reported (Entries 7-9, Table 15.4). Deprotonated 1,3-dicarbonyl compounds and unactivated amide enolates can be used as carbon nucleophiles. In most of these examples, the ester that acts as electrophile also links the substrate to the support, so that cyclization and cleavage from the support occur simultaneously. The preparation of five-membered cyclic imi-des is discussed in Section 13.8. [Pg.393]

Following an initial report39 including carbon nucleophiles for the cyclization (see below), a series of papers have defined useful possibilities with heteroatom nucleophiles.33,63-63 Although [(chloroben-zene)Cr(CO)3] undergoes lithiation to give a moderately stable species which can be trapped with elec-... [Pg.524]

In this monofunctional compound, the ketone could serve as an electrophilic center in a cyclization step. Disconnection at the indicated bond leads to the polarity shown however, it is immediately obvious that the carbon nucleophile occurs at an unactivated position, and there is no good way to produce it there without a control element at that position. [Pg.308]

Palladium(0)-catalysed coupling of non-conjugated dienes, aryl iodides and stabilized carbon nucleophiles has been developed468. An incredibly high yield (86%) of pentacycle 343 has been obtained from a Pd(0)-catalysed zipper reaction of acetylenic pentaene 342. The reaction is triggered off by a Pd-catalysed cyclization of acetylenic bond and the first olefinic bond469. [Pg.1202]

The silver(I)-mediated ring opening of halocyclopropanes has been used to construct complex frameworks through the inter- and intramolecular trapping of cationic intermediates with heteronucleophiles. An obvious extension of this work is the involvement of carbon-based nucleophiles to form new carbon-carbon bonds. In 1996, Kostikov and coworkers reported the participation of aromatic solvents in the capture of halocyclopropane-derived allyl cations even in the absence of silver(I).30 However, this early example of intermolecular attack by a carbon nucleophile is one of very few such reports. In the same year, Gassman et al. reported cationic cyclizations of gem-dibromocyclopropanes tethered to remote diene moieties (Scheme 4.16).31... [Pg.129]


See other pages where Cyclization carbon nucleophiles is mentioned: [Pg.156]    [Pg.295]    [Pg.480]    [Pg.301]    [Pg.388]    [Pg.63]    [Pg.39]    [Pg.290]    [Pg.205]    [Pg.43]    [Pg.555]    [Pg.454]    [Pg.127]    [Pg.173]    [Pg.173]    [Pg.515]    [Pg.85]    [Pg.247]    [Pg.435]    [Pg.3]    [Pg.84]    [Pg.210]    [Pg.41]    [Pg.46]    [Pg.679]    [Pg.309]    [Pg.506]    [Pg.312]    [Pg.78]    [Pg.219]   


SEARCH



Carbon nucleophile

Carbon nucleophiles

Carbon nucleophiles cyclization reactions

Carbonates cyclization

Cyclopentanes carbon nucleophile cyclization

Natural product synthesis carbon nucleophile cyclization

Nucleophilic cyclizations

Nucleophilic substitution carbon nucleophile cyclization

© 2024 chempedia.info